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CHAPTER 1

Introduction

In this course we will study the complicated geometric structures that arise
from simple natural processes and are known as fractals. We will focus on fractals
obtained in two distinct ways. One way, which is the subject of the first several
sections of these notes, is when they arise as limit points of “iterated function
systems”. The other is when they arise as collections of points that exhibit certain
behaviors under repeated iteration of functions. Examples of the former are shown
next; the latter will be discussed in the Julia and Mandelbrot sections.

With mathematical precision we will discuss how fractals are constructed, and
we will prove conditions that guarantee their existence. We will discuss geometric
properties such as self-similarity and fractal dimensions. We will learn probabilistic
algorithms that allow images to be generated efficiently on a computer, and we will
spend time on the computer making our own pictures. To give a flavor of what sort
of structures we will be discussing, we begin with three classic examples of fractals.

1.1. Classic examples

Example 1.1. This example begins with the closed interval C0 = [0, 1]
and proceeds in stages; the middle-thirds Cantor set C is the limita of the
process. In the first stage, the middle third is removed to obtain the set C1 =
[0, 1/3]∪[2/3, 1]. In the second stage, the middle thirds of the remaining sets
are removed to obtain the set C2 = [0, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1].
To obtain the set C3, remove the middle thirds of the remaining intervals in
C2. The process is illustrated geometrically in figure 1.

It is clear that not all of the points in [0, 1] are removed, so C is not
empty. It is also true, but not necessarily clear, that there are no intervals
in C, but yet that it is uncountable. Interestingly, no point c ∈ C is ‘isolated’
from the rest of it: in any interval around c there are other points from C.

Although he did not discover the set, Georg Cantor introduced it to the
mathematical public in a paper in 1883 as an example of a set that is totally
disconnected but has no isolated points. This general definition is what is
meant by topologists when they throw around the term “Cantor set”.

aWe will make the notion of convergence of sets more precise in Chapter 2.
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2 1. INTRODUCTION

Example 1.2. The Koch curve lives in the unit square

S = [0, 1]× [0, 1] = {(x, y) ∈ R2 such that 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
The usual way to construct the curve is to begin with a line segment, then
replace it with four line segments that are each 1/3 as long as the original
and placed as in the figure marked K1 below. To construct K2, four copies
of K1 are made, scaled by 1/3 and placed in the same configuration as the
segments that made K1. At the next stage, four copies of K2 are made,
scaled by 1/3, and placed in the same configuration yet again. The first
several steps appear in figure 2.

Helge von Koch introduced his curve in a paper in 1906 as an example of
a curve that is everywhere continuous but nowhere differentiable. It can be
parameterized in the form x = f(t), y = g(t). We will see in Chapter 4 that
it has infinite length yet zero volume, and a fractal dimension of ln 4/ ln 3,
which is strictly between 0 and 1, despite it being a parameterized curve.

Example 1.3. The Sierpinski triangle lives in the set

{(x, y) ∈ R2 such that 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+ y ≤ 1}
and you can think about its construction in either the Cantor set or Koch
curve ways. In the middle-thirds sense, one can see S1 of figure 3 as obtained
by removing the ‘middle’ triangle from S0, to leave three triangles that are
each half the size of the original. From S1 we obtain S2 by removing the
middle triangles of the remaining triangles. We continue removing the mid-
dle triangles of the remainder ad infinitum to obtain the Sierpinski triangle
S.

Alternatively, we can think of constructing S1 by making three copies of
S0, shrunk by a factor of two, and placed as shown. To make S2, we shrink
three copies of S1 and place them as prescribed again. We continue to this
process forever to obtain S.

Waclaw Sierpinski introduced this triangle in 1915 using a construction
as a curve that is distinct from the two methods discussed here. We will see
that its fractal dimension is ln 3/ ln 2, again between 1 and 2.
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C0 C1 C2

C3 C4 C5

Figure 1. Constructing the middle-thirds Cantor set.

K0

K1 K2

K3 K4 K5

Figure 2. Constructing the Koch curve.
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S0 S1 S2

S3 S4 S5

Figure 3. Constructing the Sierpinski triangle.

1.2. A geometric approach to transformations.

Transformations are essential in constructing fractals and are the fundamental
building blocks of iterated function systems. In this section we give fundamental
definitions to be used througout the course, and some one-dimensional examples
are provided to help build your geometric intuition.

In general the symbol X will be used to denote a mathematical space where
fractals live. Always X is a set; in the early going it will be always be R or R2 or Rn
or C or a subset of those. Later on we will make X be a “compact metric space”,
but for now just imagine some subset of the real numbers. A transformation is a
mapping defined from X to itself as follows.

Definition 1.4. A transformation T : X → X is a function with do-
main X and codomain X. That is, T assigns to each element x ∈ X an
element y = T (x) ∈ X.

It is natural in fractal geometry to use certain notation and terminology from
the world of dynamical systems, such as these next two definitions.
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Definition 1.5. Let T : X → X be a transformation and let x ∈ X.
We define T 2(x) = T ◦ T (x) = T (T (x)) and, in general,

Tn(x) = T ◦ T ◦ · · · ◦ T (x) = T (T (· · ·T (x)) · · · )) (n times).

We define the orbit of x to be the sequence

O(x) = {x, T (x), T 2(x), T 3(x), ...}.

Definition 1.6. Let T : X → X be a transformation. We say x ∈ X
is a fixed point of T if T (x) = x.

In the following exercise we are going to consider a transformation that has a
geometric interpretation you’ve known for years: its graph is a line. However, we
need a different geometric interpretation, which is to think of the transformation
as taking points from the domain back into the domain and visualizing the orbits.

Exercise 1.7. Define the transformation T : [0, 1] → [0, 1] by T (x) =
−1

2
x+

3

4
.

(1) Compute the first four elements of the orbit of x = 0.
(2) Visualize the orbit as follows: draw yourself a fairly large copy of

the unit interval [0, 1] and place the points from the orbit on it.
Connect each point to the one that follows it with an arrow in a
follow-the-bouncing-ball sort of way. (Your arrows will live above
or below your unit interval, depending on your artistic choices.)

(3) Repeat the previous parts using x = 1.
(4) Compute the fixed point(s) of T algebraically.a

(5) Reflect briefly on how the orbits seem to relate to the fixed point.

aThe word“algebraically” tends to mean to do a computation or use mathematical sym-

bols in some other way. Algebraic arguments tend to feel very precise and rigorous. I
will also often ask you for “geometric” arguments; these can include graphs or sketches
or they can be constructed from the language of geometric objects.

The transformation of exercise 1.7 is special in several ways, the most obvious
being that its graph is a line. But it also has the property that it brings points
closer together as it is applied.

Definition 1.8. Let X be a subset of R,Rn, or C.a The transformation
T : X → X is called a contraction if there is some constant c ∈ [0, 1) such
that

|T (x)− T (y)| ≤ c|x− y| for all x, y ∈ X.
The number c, which is not unique, is called a contractivity factor for T .

aThis definition applies to transformations on any metric space, so when we learn about

those it will apply retroactively.
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Exercise 1.9. Write as formal a proof as you can muster that the
transformation from exercise 1.7 is a contraction. Note: in your “scratch
work” to prepare for the proof, you should identify a good value for the
contractivity factor c.

Another useful feature of the transformation we have been considering is that
it can be broken down as the composition of two even simpler transformations:

T1(x) =
−1

2
x and T2(x) = x +

3

4
. Take a moment on scratch paper right now

to verify that T (x) = T2 ◦ T1(x) algebraically. What this means is that you can
see two separate geometric actions that move your point x from its location to the
location specified by T (x): first the size of x is halved and it is flipped across the

origin, then it is moved over to the right by
3

4
. This insight might not seem like a

big deal to you right now, but it is particularly useful when you are applying your
transformation to entire subsets of X rather than just points.

Definition 1.10. Let T : X → X be a transformation and let A ⊆ X.
We define the image of A under T to be

T (A) = {T (a) such that a ∈ A}.
Similarly, for n = 2, ... we define image of A under Tn to be

Tn(A) = {Tn(a) such that a ∈ A}.

Put another way, T (A) is the set you get by applying T to every element of A.
It is useful to be able to think of a transformation applied to a set geometrically as
well as algebraically, as in this next exercise.

Exercise 1.11. Let T be as in exercise 1.7 and let A = [0, 1]. Compute
and sketch T (A) in the following two different ways, the first more algebraic
and the second more geometric.

(1) Plug the endpoints of A into T . If that is enough for you to know
what T (A) is, write the answer now. If not, choose some other
points a ∈ A and compute T (a). Try to express T (A) in a mathe-
matically familiar way.

(2) Second, think of T as the composition T2 ◦ T1 as discussed in the
paragraph before definition 1.10. Construct a sketch for what T1
does to A, then make a sketch what T2 does to that.

(3) Repeat the process (both ways) to compute T 2(A) and T 3(A).

1.3. Collage maps: the building blocks of iterated function systems.

In Chapter 3 we will give the formal definition of an iterated function system,
but we can start working with them right away by defining the collage map given
by a finite set of transformations. We can use the transformations together to make
a mapping that takes subsets of X to subsets of X:
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Definition 1.12. Let Ti : X → X be a transformation for all i =
1, 2, ..., k and let A ⊆ X. The collage map defined by these transformations
is given by

T (A) =

k⋃
i=1

Ti(A) = T1(A) ∪ T2(A) ∪ · · · ∪ Tk(A)

We may write T = T1 ∪ T2 ∪ · · · ∪ Tk.

Notice that since A ⊆ X and each Ti takes X to itself it must be true that
Ti(A) ⊆ X for each i. Since T (A) is a union of such subsets of X it must also be a
subset ofX. That means that it is perfectly appropriate to define T 2(A) = T ◦T (A),
and T n(A) = T ◦ T ◦ · · · ◦ T (A) (n times) as before.

Example 1.13. Let X = [0, 10], T1(x) =
x

5
, and T2(x) =

x

5
+ 5, and

define the collage map T = T1 ∪ T2. Suppose that A = [5, 10]. Then
T1(A) = [1, 2] and T2(A) = [6, 7], hence T (A) = [1, 2] ∪ [6, 7]. The set T (A)
is pictured at the top of figure 4.

To compute T 2(A) = T ([1, 2]∪ [6, 7]), we need to consider what T1 and
T2 each do to the set T (A) = [1, 2] ∪ [6, 7], then union the result. Now
T1([1, 2]∪ [6, 7]) = [1/5, 2/5]∪ [6/5, 7/5], and T2([1, 2]∪ [6, 7]) = [5 + 1/5, 5 +
2/5]∪ [5 + 6/5, 5 + 7/5]. Thus T 2(A) is the union of four intervals, shown in
the middle line of figure 4. In the bottom of figure 4 we show T 3(A), which
consists of eight intervals. At each stage, the leftmost interval’s left endpoint
is getting closer to 0. Can you determine where some other endpoints seem
to be tending?

Exercise 1.14. In general, the collage map technically isn’t a trans-
formation from a space X to itself even though its component maps Ti all
are. Why is that? (Hint: given the set {x} containing a single point x ∈ X,
what kind of object is T ({x})?)

The collage map is actually a transformation on the “space of fractals”H(X), which
we will define properly in chapter 2.

Exercise 1.15. Let X = [0, 1] and define the transformations T1(x) =
1

3
x and T2(x) =

1

3
x+

2

3
. Consider the collage map given by T = T1 ∪ T2.

(1) Let A = X (i.e. the whole unit interval). Compute the sets T (A)
and T 2(A) algebraically.

(2) Make sketches of A, T (A), and T 2(A).

(3) Repeat with A =

{
1

2

}
(i.e. a set with one point in it).

(4) In each case, consider whether T n(A) seems to tend to a specific
set A0 as n goes to infinity. If so, how do the limit sets compare?
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Exercise 1.16. Let X = [0, 6], T1(x) =
x

2
, and T2(x) =

2x

3
+ 2, and

define the collage map T = T1 ∪ T2.

(1) Let A = X. Compute the sets T (A) and T 2(A) algebraically.
(2) Make sketches of A, T (A), and T 2(A).
(3) Repeat with A = {6}.
(4) In each case, consider whether T n(A) seems to tend to a specific

set A0 as n goes to infinity. If so, how do the limit sets compare?

Exercise 1.17. Let X = [0, 1], T1(x) =
x

4
, and T2(x) =

x

2
+

1

4
, and

define the collage map T = T1 ∪ T2.

(1) Let A = X. Compute the sets T (A) and T 2(A) algebraically.
(2) Make sketches of A, T (A), and T 2(A).
(3) Repeat with A = {0}. For this one you should try to go to T 4(A).
(4) In each case, consider whether T n(A) seems to tend to a specific

set A0 as n goes to infinity. If so, how do the limit sets compare?

Exercise 1.18. Let X = [0, 10], T1(x) =
x

10
+ 1, T2(x) =

x

10
+ 4, and

T3(x) =
x

10
+ 7, and define the collage map T = T1 ∪ T2 ∪ T3.

(1) Let A = X. Compute the sets T (A) and T 2(A) algebraically.
(2) Make sketches of A, T (A), and T 2(A).
(3) Repeat with A = {7}.
(4) In each case, consider whether T n(A) seems to tend to a specific

set A0 as n goes to infinity. If so, how do the limit sets compare?

Exercise 1.19. Let X = [0, 1], T1(x) =
x

2
, and T2(x) =

x

2
+

1

2
, and

define the collage map T = T1 ∪ T2.

(1) Let A = X. Compute the sets T (A) and T 2(A) algebraically.
(2) Make sketches of A, T (A), and T 2(A).

(3) Repeat with A =

{
1

3

}
. For this one you should try to go to

T 4(A), at least with sketches.
(4) In each case, consider whether T n(A) seems to tend to a specific

set A0 as n goes to infinity. If so, how do the limit sets compare?

1.4. Affine transformations in two dimensions: a geometric approach

Fractals are more fun in two dimensions and so we need to get serious about
studying R2-transformations. Although we have many types to choose from, as in
the one-dimensional case we choose to stick with simple “affine” transformations. In
one dimension, an affine transformation is any transformation of the form T (x) =
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ax + b, in other words a linear transformation followed by a translation. Every
example from the previous sections was of this form, and the shrink-and-move
intuition we developed there will be useful in two and higher dimensions also. To
make a precise definition of an affine map in two dimensions we first need to set
some notation.

Let us denote elements of R2 in any of three ways, which we will use inter-
changeably:

~x = (x1, x2) =

(
x1
x2

)
A linear transformation from R2 to itself is given by matrix multiplication and can
be expressed in many ways, including these:

(1.1) M~x =

(
a b
c d

)(
x1
x2

)
= (ax1 + bx2, cx1 + dx2)1

When thinking about linear transformations it is particularly useful to think
about how they affect the standard basis vectors, which in this course we will denote
by ~e1 = (1, 0) and ~e2 = (0, 1). Take a moment to use equation 1.1 to verify that
M ~e1 = (a, c) and M ~e2 = (b, d). That is to say, the first column of M tells us what
M does to the first standard basis vector, and the second column of M tells us
what it does to the second.

A quick and dirty way to visualize matrix multiplication is to always do the
following. Consider the unit square, which can be seen as having corners at the
origin, ~e1, ~e1 + ~e2, and ~e2. Then M sends the unit square to the parallelogram
having corners at M(0, 0),M ~e1,M(~e1 + ~e2),and M ~e2. Take a moment to verify

that if M =

(
a b
c d

)
, then these corners are (0, 0), (a, c), (a + b, c + d), and (b, d),

respectively.

Example 1.20. Suppose that M =

(
0 −1

1/2 0

)
. Then we can see that

the unit square is rotated by π/2 counterclockwise and squished by half in
one direction, as the images below show.

e1

e2

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

−→ Me1

Me2
-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

1If you have not seen matrix multiplication before you should take this as a definition.
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Exercise 1.21. Consider the following matrices:(
0 −1/2

1/2 0

) (
1/2 −1/2
1/2 1/2

) (
0 1/3

1/3 0

) (
1/2 1/2
0 1

) (
1/2 1
0 1/2

)
(1) Sketch how each matrix acts on the unit square, like in example

1.20.
(2) Make a winking smiley face (or some other asymmetric image of

your choice) inside your unit square and show how each matrix
transforms it.

(3) For each matrix, determine whether the transformation given by
T (~x) = M~x is a contraction. If it is, give a contraction factor. If
not, exhibit two vectors ~x and ~y that are not brought closer by the
transformation.

We know by the remark immediately after definition 1.1 that the first column
of a matrix is where it sends the first standard basis vector, and that the second
column is where it sends the second. This means that if you know where a matrix
sends the basis vectors then you know the matrix itself. That is, you can use
geometric descriptions of linear transformations to make matrices for them. This
next exercise uses words, but you can translate pictures into matrices using this
principle also.

Exercise 1.22. In each of the following determine the matrix M that
has the following effect on R2. Find the columns by figuring out where
~e1 and ~e2 go. You can verify your answer by multiplying your matrix by
vectors of your choice and seeing if they go where they are supposed to.

(1) M rotates vectors clockwise by π/3.
(2) M rotates vectors clockwise by π/3, then rescales the x direction

by a factor of 2.
(3) M reflects across the line y = −x.
(4) M reflects across the line y = −x, then rescales the whole vector

by a factor of 1/2.

An affine transformation from R2 to itself is given by matrix multiplication
followed by translation. It can be expressed in many ways, including these:

(1.2) T (~x) = M~x+ (e, f) =

(
a b
c d

)(
x1
x2

)
+

(
e
f

)
= (ax1 + bx2 + e, cx1 +dx2 +f)

Geometrically, affine transformations can be visualized by what they do to the
unit square. This is best done in two stages: visualizing the matrix part of the
transformation first, then translating.
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Example 1.23. Make an affine transformation out of the matrix M =(
0 −1

1/2 0

)
from example 1.20 by defining T (~x) = M~x + (1, .5). Then the

transformation of the unit square can be seen in these two stages:

e1

e2

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

−→ Me1

Me2
-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

−→

T(e1)

T(e2)

-0.5 0.5 1.0

-0.5

0.5

1.0

Exercise 1.24. For each matrix in exercise 1.21, sketch the image of
the unit square under the transformation T (~x) = M~x+ (1, .5).

Exercise 1.25. (1) For each matrix from example 1.22 sketch the
affine transformation T (~x) = M~x + (0, .5). Decorate your unit
square with an asymmetric image so that you can see how it trans-
forms in each case.

(2) Which transformations are contractions?
(3) Which can be considered transformations on the unit square (as

opposed to all of R2)?

1.5. Collage maps in two dimensions

In two dimensions we see the power and beauty of iterated function systems
even better than in one dimension. In this section we will experiment with various
choices of affine transformations and see how these choices affect the underlying
fractal. By now you are probably beginning to ask two very important questions:
(1) What exactly do we mean when we say “the limit under the collage map”? and
(2) What exactly is a fractal? The answer to (1) is the subject of Chapter 2. The
answer to (2) has not yet been agreed upon by the mathematical community. In
section 1.6 we will address the key points of agreement on that question.
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Exercise 1.26. Let X = [0, 1]× [0, 1] be the unit square in R2 and let
C(x, y) = (.5x, .5y). Define the following three transformations from X to
itself:

T1(x, y) = C(x, y) + (.5, 0)(1.3)

T2(x, y) = C(x, y) + (0, .5)(1.4)

T3(x, y) = C(x, y) + (.5, .5)(1.5)

Given an initial set S0, do the following four exercises on graph paper.

(1) Compute and sketch T1(S0), T2(S0), and T3(S0) in separate unit
squares. Label your scale and important points.

(2) Let T be the collage map given by T1 ∪ T2 ∪ T3. Define the set
S1 = T (S0) and sketch it in a fresh unit square.

(3) Sketch S2 = T (S1) in a separate unit square from that of S1.
(4) On your graph paper, make a really big unit square and sketch a

nice picture of S3 = T (S2) = T 3(S0).

The choices for S0 are as follows:

(a)X, (b)[0, .5]×[.5, 1], (c)[0, 1]×[0, .5], or (d){(x, y) ∈ X such that y ≥ x}

In the examples from the previous section and in this example you may be
noticing a pattern: it does not seem to matter what the initial set is. That is not a
fluke, but rather a common trait that collage maps constructed from contractions
share. The fractal associated with the IFS from exercise 1.26 is shown in figure ??.

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

Figure 4. The collage map applied three times to A.

There are a few key things to notice about this fractal image, which we will call
A. Each initial set S0 was a subset of the unit square, as was T (S0), T 2(S0), and
all further images under the collage map. Naturally this makes A a subset of the
unit square also. It is a very special subset in that it is a fixed point of the collage



1.5. COLLAGE MAPS IN TWO DIMENSIONS 13

map in the sense that T (A) = A. Let’s analyze the statement that T (A) = A
geometrically with a detailed look at figure ??.

When T1 is applied to A, it shrinks it by half and moves it to the right by
(.5, 0). You can see that A has a copy of itself in its lower-right corner, and that’s
the part of the collage map given by T1. When T2 is applied to A, it shrinks it by
half and moves it up by (0, .5). In that location you see that A has a copy of itself,
which is the part of the collage map given by T2. The map T3 shrinks by half and
moves diagonally by (.5, .5); the third copy of A is there in the upper right. Thus
when the collage map is applied to A, it makes three copies of itself whose union is
A again. That is to say, T (A) = A.

Exercise 1.27. Let X be the unit square in R2. Make up four affine
transformations Ti : X → X, i = 1, ..., 4 such that for their collage map T
we have that T (X) = X. Do you believe it is possible to do this in such a
way that Ti(X) ∩ Tj(X) = ∅ when i 6= j?

Exercise 1.28. Let A = {(1/2, 1/2)} and consider the collage map you
just made up for the previous question. Compute T n(A) for some small
values of n. Do you believe that it may be true (given proper definitions)
that T n(A)→ X as n→∞?

It is sometimes possible to look at a fractal such as the one in figure ?? and
determine the collage it came from. To do this, one must parse the image into
components that appear to be similar to the original. Then, for each piece of the
image one must try to determine the affine transformation that takes the whole
image into that piece.
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Example 1.29. Let us consider this fractal:

It is made up of three copies of itself, each half as big as the original.
One copy contains the origin and is simply the image of the fractal under
the map T1(~x) = ~x/2. The piece of the fractal between x = .5 and x = 1
is the entire image halved, rotated by π/2 counterclockwise, then moved

to the right by (1, 0). This corresponds to T2(~x) =

(
0 −1/2

1/2 0

)
~x + ~e1.

Finally the piece on the upper left, between y = .5 and y = 1, is the entire
image halved, rotated by π/2 clockwise, and then moved up by (0, 1). This

corresponds to T3(~x) =

(
0 1/2
−1/2 0

)
~x + ~e2. When we apply the collage

map of these three transformations, we see that this fractal is fixed by it.

Exercise 1.30. Now it is your turn to try and decode the collage a
fractal has come from, first in one dimension. Here we have a fractal A that
is the fixed set of a collage map made from three affine transformations:

The fractal is contained in unit interval of the real line, but it is shown
floating above the line so that you can see it. Find the three transformations
Ti : [0, 1] → [0, 1] for which T (A) = A. (You should be using the scale
provided in the figure to help you determine precise contraction factors and
translations).
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Exercise 1.31. Now try to figure out the three affine transformations
of the unit square that give this set A in the limit:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.6. What is a fractal?

During the early study of fractals it became clear that a formal defintion was
elusive, and indeed none of [Bar08, Bar12, Fal06, PC09] offer one. Instead, frac-
tals are objects that are identified by two main properties: complicated geometric
structure and self-similarity.

One way to describe a ‘complicated geometric structure’ is to describe what it
is not: fractals are not simple objects like lines, circles, cones, or triangles. Rather,
they are like clouds, trees, and coastlines: objects with obvious structure but no
obvious way to describe or measure them. One way that this idea can be quantified
is through dimension. In fact, originally Mandelbrot felt the definition of a fractal
should depend on its fractal dimension.

The box-counting dimension DimB of a set is the foremost definition of a fractal
dimension, and we will define it properly in chapter 4. For now, think of it as a
number that captures how the mass of the set scales when it is expanded by a fixed
amount. The box-counting dimension can be a number that is not an integer. By
way of contrast, the topological dimension DimT of a set, which also has a technical
definition we do not describe here, corresponds to our intuititve idea of dimension
and can therefore only take integer values. In an early treatise on fractals [Man77],
Mandelbrot brings us the following definition of what it means to be fractal:

“The cases where DimB = DimT include all of Euclid, and
the cases where DimB > DimT include every set I was ever
tempted to call fractal... Hence, there is no harm in proposing
the following definition:
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A fractal will be defined as a set for which the Hausdorff-
Besicovitch dimension2 strictly exceeds the topological dimen-
sion.”

In the fullness of time, it became clear that there were sets that failed this defi-
nition and yet still seemed to deserve to be called fractal [Edg90, p. 179]. However,
sets with non-integer fractal dimension have the sort of complicated geometry that
is often described as fractal.

The second main indicator of what it means for a set to be a fractal is self-
similarity. The word ‘similarity’ can be construed in a number of ways, the strictest
of which is the type taught in an elementary geometry course to describe things
like similar triangles. In this definition two objects are similar if one is a rescaling
of the other. A set is self-similar, then, if portions of the set are similar to the
whole set. We see this version of self-similarity in all of the introductory examples
of these notes.

However, it is useful to broaden the category of self-similarity to include sets
for which portions are similar to some portion of the original, but perhaps not all
of it. Moreover, we may wish to allow some flexibility in the word ‘similar’, perhaps
allowing copies that are images under a contracting but nonlinear map. In chapters
5 and 6 we will learn about sets having this sort of self-similarity: Julia sets and
the Mandelbrot set.

In [Fal06, p. xxv] an expansive list of properties is suggested, and we leave
them as our final word on what it means to be fractal.

“When we refer to a set F as a fractal, therefore, we will typically
have the following in mind.

(i) F has a fine structure, i.e. detail on arbitrarily small scales.
(ii) F is too irregular to be described in traditional geometrical

language, both locally and globally.
(iii) Often F has some form of self-similarity, perhaps approxi-

mate or statistical.
(iv) Usually, the ‘fractal dimension’ of F (defined in some way)

is greater than its topological dimension.
(v) In most cases of interest F is defined in a very simple way,

perhaps recursively.”

1.7. Exercises

Exercise 1.32. Let X be a subset of R,Rn, or C, and let T1 : X → X and
T2 : X → X be contraction mappings. Prove that T1 ◦ T2 : X → X is also a
contraction mapping.

Exercise 1.33. Give an example of a contraction mapping T : R → R that
has the property that |T (x)| > |x| for some x ∈ R. The ideal response will prove
that T is a contraction, then exhibit a specific x that does not shrink under the
transformation.

Exercise 1.34. Suppose that T1(~x) = (ax1 + bx2 + e, cx1 + dx2 + f) and
T2 = (gx1 + hx2 + k, ix1 + jx2 + l) are affine transformations of R2. Prove that
T1 ◦ T2 is also an affine transformation of R2 and give its explicit formula.

2Pretend he said “box-counting dimension”
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Exercise 1.35. (1) Find the formula of an affine transformation of R2

that takes the triangle with vertices at (0, 0), (1, 0), and (0, 1) to the tri-
angle with vertices at (2, 1), (3, 3), and (0, 4).

(2) Find another affine transformation that accomplishes the same task.
(3) How many affine transformations are there in total that could do this?

Exercise 1.36. For this spiraling fractal do not attempt to find specific for-
mulae for the affine transformations.

Instead, make a sketch of the domain X = [−1, 1] × [−1, 1] that shows your
estimate of where each transformation takes X. (Hint: one of your transformations
only contracts a little bit, and the rest contract a lot.)

Exercise 1.37. Find the affine transformations of the unit square whose collage
map T gives this fractal:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0





CHAPTER 2

Hausdorff metric and the space of fractals

The goal of this chapter and the next is to rigorously prove conditions under
which the fractal for a given collage map actually exists. That is, we will show
when a collage map T admits a set A for which T (A) = A. As an added bonus, we
will prove that the set A is the limit of T n(S0) for any viable initial set S0. That
insight gives rise to an efficient algorithm that may be implemented on a computer
to generate images of fractals.

In order to do all of this in a mathematically sound fashion it is necessary to
build a foundation, which is the purpose of this chapter. The foundation we require
is an understanding of “the space of fractals” H(X) as a metric space under the
“Hausdorff metric” dH . There are a number of technical details we will need to
address in order to make this precise.

Until further notice we will use X to mean some subset of Rn or C along with
its usual metric, which we will denote by d(x, y) and call the standard Euclidean
metric. To be precise, if x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) are elements of
Rn, then we will use the following definition and notations interchangeably:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 = |x− y|.

If z = a+ ib and w = c+ id are elements of C the metric is basically the same and
can be written as

d(z, w) =
√
a− c)2 + (b− d)2 =

√
(z − w)(z − w) = |z − w|.

2.1. A tiny bit of point-set topology

We cannot avoid learning a little bit of terminology that is commonly found in
the realm of “analysis” (the branch of mathematics that calculus lives in). The main
thing we need is the idea of a compact set, which we will give a simplified definition
of here, and which you will learn/have learned about in your Real Analysis course.
Compact sets in Rn or C are sets that are closed and bounded, so we must define
those ideas now.

19
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Definition 2.1. We say that a set A ⊂ X is closed if it contains its limit
points. That is, if a sequence {an} = {a1, a2, a3, ...} in A has the property
that lim

n→∞
an = a, then a ∈ A also.a

aOf course, if you have not had Real Analysis you may not know the precise definition of

the limit of a sequence. For our purposes it will suffice for you to use your intuitive idea

of a limit. However, you may be curious about the official definition, so here it is.

Definition 2.2. Let {xn} be a sequence in X. We say lim
n→∞

xn = L if and only if for

every ε > 0 there is an N ∈ N such that for every n ≥ N , d(xn, L) < ε.

Exercise 2.3. Throughought your mathematical career your instruc-
tors have been referring to intervals like [3, 7] as closed intervals. It turns
out they have always meant it in the precise sense of Definition 2.1.

(1) Convince yourself that [3, 7] satisfies the definition of being closed.
(2) Make an example of an interval that is not closed. Show, using the

definition, exactly why it fails to be closed.

Exercise 2.4. Can a finite set fail to be closed?

Exercise 2.5. Give several examples of sets that are or are not closed,
in R and C. Try to make examples that differ in interesting ways.

The intuitive idea behind a set being bounded is that no portion of it heads off
to infinity. In R2 or C that is equivalent to saying you can draw a big circle around
it. In R it means that you can put upper and lower bounds on its elements. In
higher dimensions it means you can enclose the set in a sufficiently large “n-ball”
(interval, circle, sphere,...). For concreteness in the definition we choose to say that
the n-ball is centered at the origin.

Definition 2.6. We say that a set A ⊂ X is bounded if there is some
number r > 0 such that |a| ≤ r for all a ∈ A. That is to say, there is an
r > 0 for which d(a, 0) ≤ r for all a ∈ A.

Exercise 2.7. Can a finite set fail to be bounded?

Exercise 2.8. Give several examples of sets that are or are not bounded,
in R and C. Try to make examples that differ in interesting ways.

What we really need to define the space of fractals is compactness. This is
a profoundly useful property of sets that will be dealt with in detail in your real
analysis course. What we are taking as a definition here is actually the celebrated
Heine-Borel theorem, but that is something for you to tackle on another day.
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Definition 2.9. We say that a set A ⊂ X is compact if it is closed and
bounded.

There are a number of incredibly useful properties possessed by compact sets.
One that is very important for fractal geometry is that it is possible to measure the
distance between two compact sets unambiguously.

2.2. H(X), the space of fractals.

Let X be a compact subset of Rn (for some n) or C, with the standard
Euclidean metric d. The space of fractals is the set

H(X) = {A ⊆ X such that A is compact}

An element of H(X) is therefore a compact subset of X. Take a moment to
think about that carefully. Probably you will need several moments, because a
“point” in the space of fractals H(X) is actually a “set” in the space X. Put
another way, the space of fractals is the set of compact subsets of X.

Exercise 2.10. Let X be the unit interval [0, 1]. Give three specific
examples of elements of H(X), complete with pictures. Try and make your
examples as different from each other as possible.

Exercise 2.11. Give examples of subsets of [0, 1] that are not elements
of H(X). Draw pictures that explain why.

Exercise 2.12. Let X be the unit square in R2. Give three specific
examples of elements of H(X), complete with pictures. Try and make your
examples as different from each other as possible.

Exercise 2.13. Give examples of subsets of the unit square that are
not elements of H(X). Draw pictures to help explain why.

Fractals are compact subsets of X, i.e. elements of H(X). They live in H(X)
along with all the other compact subsets of X, but they satisfy special geometric
properties that were discussed in the first chapter. We know that fractals can
appear is as limit points of iterated function systems; next we need to develop the
concept of metric spaces in order to make that idea precise.

2.3. Metric spaces

The only way to do geometry on a space is to first know how to measure the
distance between points in that space. A property of an object in the space is
considered “geometric” if it doesn’t change when you move the object in a manner
that preserves distances.
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The domain of a metric on a space X is the set of all ordered pairs of elements
of X. It takes the following notation and definition:

X ×X = {(x, y) such that x, y ∈ X}.

Definition 2.14. A metric on X is a function d : X×X → R satisfying
the following conditions:

(1) d(x, y) ≥ 0 for all x, y ∈ X,
(2) d(x, y) = 0 if and only if x = y,
(3) d(x, y) = d(y, x) for all x, y ∈ X, and
(4) (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Thus a metric is positive, symmetric, satisfies the triangle inequality, and dis-
tances between nonequal elements are never 0. An important detail to notice in
this definition is the fact that the distance is not allowed to be ∞. That is because
we have defined d with d : X ×X → R, and ∞ is not a real number.

One would hope that the standard Euclidean metric satisfies the official math-
ematical definition for a metric, and it does:

Exercise 2.15. Prove that when X = R, the function d(x, y) = |x− y|
satisfies the definition of a metric. You may assume all standard properties
of the absolute value function as you do your proof.

Exercise 2.16. For the standard Euclidean metrics in R and R2, deter-
mine conditions on x, y and z for which the triangle inequality is an equality.

Exercise 2.17. Consider the standard Euclidean metric in R2.

(1) Sketch a picture of d(x, y) and explain it in terms of the Pythagorean
Theorem.

(2) Sketch another picture in R2 that clearly shows why the triangle
inequality is so named.

There are numerous reasons why it is useful in real life to have different defi-
nitions of a metric on the same space. For example, imagine a ruler that measures
distance in the English system (inches) on one side and in the metric system (cen-
timeters) on the other. If I ask you the distance between two points, your answer
is going to depend on which side of the ruler you are using, although it would be
natural for you to provide the units with your answer.

Exercise 2.18. Consider d : R2 × R2 → R given by the formula

d(x, y) =

{
1 x 6= y

0 x = y

Is d a metric on R2?
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Exercise 2.19. For this exercise let X = R.

(1) Make up an example of a function d : X × X → R such that
condition (1) of a metric fails.

(2) Make up an example of a function d : X × X → R such that
condition (1) of a metric holds but condition (2) fails.

(3) Make up an example of a function d : X × X → R such that
conditions (1) and (2) of a metric hold but condition (3) fails.

(4) Make up an example of a function d : X × X → R such that
conditions (1), (2), and (3) hold but (4) fails.

When you change the metric on a space you change its geometry in a funda-
mental way. Experiment with this idea using the metric(s) that you came up with
here by considering balls of radius ε centered at x ∈ X, defined by and with the
notation:

B(x, ε) = {y ∈ X such that d(x, y) ≤ ε}

The choice of metric determines the shape of the ball by determining which
points fall into the ball and which do not. Put another way, the choice of the
metric determines the geometry of the balls, and by extension the geometry of
X. In the next few exercises you have the opportunity to see what happens when
different metrics are applied.

Exercise 2.20. (1) For the standard Euclidean metric in R, com-
pute B(3, 1/2) and B(2,−1).

(2) Let dα(x, y) = |αx − αy| for some α > 0. Compute B(3, 1/2) in
this metric.

Exercise 2.21. Try to make up an example of a metric on R2 that isn’t
the standard Euclidean metric by altering the definition of the standard
Euclidean metric just a little bit. If you are successful, try to compute
B(x, ε) for some choice of x and ε and see what shape the ball is.

2.4. Hausdorff metric on H(X)

The Hausdorff metric is a way to measure the distance dH(A,B) between two
compact sets A,B ∈ H(X). We’re going to look at the definition two different ways,
both of which depend on the standard Euclidean metric and which are equivalent.
The first way depends on the idea of ε-thickening of sets. The second way depends
on maximizing the minimum distance between elements of A and B. In both cases
care needs to be taken to ensure the metric is symmetric, i.e. that dH(A,B) =
dH(B,A), and in both cases this will be done by taking a maximum.

2.4.1. Hausdorff metric definition using ε-thickening. .
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Let A be a compact subset of X and let ε ≥ 0. The ε-thickening of A is the
set

Aε = {x ∈ X such that d(x, a) ≤ ε for some a ∈ A}.
That is, Aε is the subset of X that contains all the points in X that are
within some element of A. Alternatively, one could imagine taking the union
of all of the ε-balls B(a, ε), using each element a of A as a center.

Example 2.22. Suppose A ⊂ R is given by A = {1, 2} and let ε = 1/3.
Then Aε = [2/3, 4/3] ∪ [5/3, 7/3]. This is because every point in [2/3, 4/3]
is within ε of 1 ∈ A and every point in [5/3, 7/3] is within ε of 2 ∈ A.

Exercise 2.23. Let A = [1, 2] ⊂ R and let ε = 1/4. Find Aε.

Exercise 2.24. Let C ⊂ [0, 1] be the middle-thirds Cantor set and let
ε = 1/9. Find Cε. Repeat with ε = 1/27.

Exercise 2.25. Let A ⊂ R2 be the unit circle and let ε = 1/2. Give a
precise description of Aε. Repeat for ε = 2.

Exercise 2.26. Let A be the line segment in R2 connecting the origin
to (1, 1) and let ε = .1. Make a fairly precise sketch of the set Aε.

Exercise 2.27. Let A ∈ H(X) and let ε = 0. What is Aε?

In order to find the Hausdorff distance between two compact sets A,B ⊂ X
you will need to be able to find the smallest ε for which B ⊂ Aε. That is to say, you
will need to be able to find the minimum amount of thickening A needs in order to
cover all of B. Let’s look at a few concrete examples first and then define what we
mean by this precisely.

Example 2.28. Let A = {1, 2} ⊂ R and let B = [.75, 1.25]. The small-
est ε for which B ⊂ Aε is .25. That’s because A.25 = [.75, 1.25]∪ [1.75, 2.25]
and if ε is any smaller than .25, the interval from Aε that intersects B is too
small to contain it.

Exercise 2.29. For the A and B in the previous example, what is the
smallest ε for which A ⊂ Bε?

Let’s be really precise about our usage of the word “smallest” by defining what
it means to be the minimum value in a set of real numbers.
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Definition 2.30. Let A ⊂ R. The minimum element of A, if it exists,
is denoted minA = min{x such that x ∈ A} and is defined to be the element
a ∈ A for which a ≤ x for all x ∈ A.

It is possible for the minimum element of a set not to exist, for instance the
interval (0, 1) has no minimum element.1 In the space of fractals we do not have
to worry about this problem because compact sets of real numbers always have a
minimum element.

Exercises 2.28 and 2.29 show that one needs to consider two minimum epsilons:
the one for which B ⊂ Aε and the one for which A ⊂ Bε. If we do not consider both
we run the risk of the metric we define using ε-thickenings to fail to be symmetric.

Definition 2.31. Let A,B ∈ H(X). The Hausdorff distance between
A and B is given by

(2.1) dH(A,B) = min{ε such that A ⊂ Bε and B ⊂ Aε}

It is possible to rewrite this definition as the maximum of two minimums:

(2.2) dH(A,B) = max {min{ε such that A ⊂ Bε},min{ε such that B ⊂ Aε}}
Although that may look more complicated, it may the more useful because you will
calculate each ε separately and then just take the larger of the two. To see that
it is equivalent, consider the ε defining the minimum in equation 2.1. That ε is
greater than or equal to each of the minimums of equation 2.2 and thus is greater
than or equal to their maximum. On the other hand, the maximum of the two
epsilons from 2.2 is certain to be an epsilon for which both A ⊂ Bε and B ⊂ Aε, so
it is greater than or equal to that from 2.1. When two numbers are greater than or
equal to each other they must be equal.

Exercise 2.32. Let A = {1, 2} ⊂ R and let B = [.75, 1.25]. Find
dH(A,B).

Exercise 2.33. In this exercise we consider distances between compact
subsets A and B of R2. Please make sketches to illustrate your answers.

(1) LetA be the unit square [0, 1]×[0, 1]and letB = {(x, y) such that x2+
y2 = 1} (the unit circle). Find dH(A,B).

(2) Let A be the unit square and let B be the disk of radius 1/2
centered at (1/2, 1/2). Find dH(A,B).

(3) Let A be the unit square and let B be the line segment connecting
(0, 1) to (1, 0). Find dH(A,B).

(4) Let A be the unit square and let B be the line segment connecting
(−1, 2) to (0, 2). Find dH(A,B).

(5) Let A be the line segment from the origin to (1, 0) and let B be
the line segment from the origin to (0, 1). Find dH(A,B).

1There is a related mathematical notion called the infimum of a set, which is the largest

number that is not greater than any element of the set. The infimum of (0, 1) is 0.
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Exercise 2.34. Let A = [0, 1/2] and consider the Cantor set collage
map T = T1∪T2 on H([0, 1]) given by T1(x) = 1/3x and T2(x) = 1/3x+2/3.
Compute dH(A, T (A)) and dH(T (A), T 2(A)).

Exercise 2.35. In exercise 1.26 you were assigned a set S0 and asked
to apply the collage map T to it two times. For that collage map and your
particular S0, compute dH(S0, T (S0)) and dH(T (S0), T 2(S0)).

2.4.2. Hausdorff distance via the maximum of the minimum dis-
tances. We must build up to Hausdorff metric in stages in this method also. We
begin by measuring the distance from a point x ∈ X to a a set A ∈ H(X).

Consider the Euclidean distance d(x, a) for each element of A; the minimum
is defined to be the distance from x to A and we write

l(x,A) = min{d(x, a) such that a ∈ A}

As before, we don’t have to worry about whether this minimum exists since A
is a compact set.

Exercise 2.36. Let A be the unit circle in R2 and let x = (1, 1). Find
l(x,A).

Exercise 2.37. Let H(X) be any space of fractals and let A ∈ H(X).
If x ∈ A, what is l(x,A)?

A particularly nice consequence of the compactness of A is that not only is this
minimum distance guaranteed to exist, it must be realized as the distance between
x and at least one specific point in A.

Lemma 2.38. For any A ∈ H(X) and x ∈ X there is an element ŷ ∈ A
for which l(x,A) = d(x, ŷ).

For the proof of this lemma see [Bar12, p. 29].

Exercise 2.39. In each of the previous two exercises find ŷ.

Next we define the distance from one set A ∈ H(X) to another set B ∈ H(X)
by considering all distances l(a,B) over all a ∈ A. This maximum is, like
the minimum, guaranteed to exist because of compactness. We define the
distance from A to B as

l(A,B) = max{l(a,B) such that a ∈ A}
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Exercise 2.40. Let A = [0, 2] and let B = [1, 1.5]. Find l(A,B).

There is a similar lemma saying that the maximum distance is attained by
elements of A and B which we state here. The existence is a consequence of
compactness.

Lemma 2.41. For any A,B ∈ H(X) there exists x̂ ∈ A and ŷ ∈ B such
that l(A,B) = d(x̂, ŷ).

Exercise 2.42. Let A = [0, 2] and let B = [1, 1.5]. Find x̂ and ŷ that
satisfy the lemma. Are they unique?

So the function l seems like progress toward defining a metric on H(X). We
immediately see that it is nonnegative. Consider the following exercise and then
decide about conditions (2) and (3) of a metric.

Exercise 2.43. Let A = [0, 2] and let B = [1, 1.5]. Find l(B,A).

So we don’t quite have a metric yet. But it turns out that you can fix both of
the issues this example presented in a very simple way by defining the Hausdorff
metric to be

(2.3) dH(A,B) = max{l(A,B), l(B,A)}

It is a technical exercise to prove that this version of the definition is equivalent
to the one given in terms of ε-thickenings. A viable strategy for the proof is to
consider ε to be the value given by the first definition and ε′ the value given by the
second. Then you would prove that ε ≤ ε′ and ε′ ≤ ε. This shows they are equal.

Exercise 2.44. A corollary to Lemma 2.41 is that there is an x̂ ∈ A
and a ŷ ∈ B such that dH(A,B) = d(x̂, ŷ). Prove this corollary.

Exercise 2.45. Let A = [0, 2] and let B = [1, 1.5]. Find dH(A,B) and
find the x̂ and ŷ that represent this distance.

Exercise 2.46. Let A be the disk of radius 2 centered at (3, 0) and let
B be the rectangle with corners at (2,−2), (3,−2), (3, 4), and (2, 4).

(1) Make a sketch that uses Lemma 2.41 to show l(A,B). Be sure to
label x̂ and ŷ.

(2) Repeat the previous part for l(B,A).
(3) Find dH(A,B).
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Exercise 2.47. Let X be the unit square and let T be the collage map
of the transformations Ti, i = 1, .., 4 defined as follows.

T1(x) = x/2 T2(x) = x/2 + (1/2, 0)

T3(x) = x/2 + (0, 1/2) T4(x) = x/2 + (1/2, 1/2)

Let A ∈ H(X) be given by A = {(0, 0)}.
(1) Find dH(A,X), dH(T (A), X), and dH(T 2(A), X).
(2) Find a formula for dH(T n(A), X).
(3) We can consider the sequence {T n(A)}∞n=0 of elements of H(X).

Discuss the evidence for the existence of the limit lim
n→∞

T n(A).

2.5. Exercises

Exercise 2.48. Consider the subset of R2 given byA = {(x, sin(π/x)) such that x ∈
(0, 1)}.

(1) Make a fairly accurate sketch of this subset of R2.
(2) Is this set bounded?
(3) A is not a closed set. Find the limit points of A that are not in A.
(4) For two of the limit points of A that you found in the previous part,

exhibit a sequence of elements of A that converge to it.

Exercise 2.49. The “taxicab metric” is a natural metric to use in R2 and is
defined by:

dt(x, y) = |x1 − y1|+ |x2 − y2|
(1) Prove that dt satisfies the conditions to be a metric.
(2) Explain in words, perhaps using a drawing to explain your thinking, why

the word “taxicab” has been chosen to describe the metric.

Exercise 2.50. (1) For the metric ds(x, y) = |x3 − y3| on R, compute
B(0, 1/8) and B(3, 1/8). Compare and contrast to each other and to the
balls you would get using the standard Euclidean metric.

(2) For the taxicab metric in R2, calculate B((0, 0), 1). Compare and contrast
to what you get for B((0, 0), 1) using Euclidean metric.

Exercise 2.51. Prove that if ε ≥ 0, then B ⊆ Bε.

Exercise 2.52. Prove, using whichever definition of dH you like, properties
(1), (2), and (3) of a metric.

Exercise 2.53. Prove that if B ⊂ A, then l(B,A) = 0.

Exercise 2.54. Let X = Rn and consider A and B to be compact subsets of
X. Prove the following two facts:

(1) A ∪B is a compact subset of X.
(2) A ∩B is a compact subset of X.



CHAPTER 3

Iterated Function Systems

Throughout this chapter, X will denote a compact subset of Rn or C and H(X)
will be its space of fractals, endowed with the Hausdorff metric. The reason for
this stipulation is so that the space of fractals H(X) is itself a compact set under
the Hausdorff metric, which is a fact that we present without proof. The most
important thing this implies for our purposes is the following.

Lemma 3.1. If {An} is a sequence in H(X) such that lim
n→∞

An = A,

then A ∈ H(X). In particular, a convergent sequence of nonempty compact
subsets of X converges to a nonempty compact subset of X.

3.1. Collage maps as contractions on the space of fractals

For concreteness let us write down the definition of a contraction mapping
in the setting of the space of fractals. In this definition consider T to be any
transformation on H(X), most often but not always a collage map.

Definition 3.2. We say T : H(X) → H(X) is a contraction mapping
if there is a c ∈ [0, 1) such that for all A,B ∈ H(X),

dH(T (A), T (B)) ≤ c dH(A,B)

An elementary contraction mapping on H(X) is one obtained by a contraction
on X. To be precise, let T : X → X be a contraction mapping with contraction
factor c ∈ [0, 1). Then by definition 1.10, T defines a transformation on H(X) and
we will soon prove that it is a contraction on H(X) with contraction factor c.

First we should note that whether or not T : X → X is a contraction, as long
as it is continuous it extends to a transformation on H(X). To see this, consider
T (A) for some element A ∈ H(X). It is nonempty since A is. The fact that it is
compact is a real analysis fact: we all learn the mantra “The continuous image of
a compact set is compact”. If T is a contraction on X, then it is automatically
continuous and thus extends to a transformation of the space of fractals.

29
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Example 3.3. Let X = [0, 1], A = [1/4, 1/2] and B = [1/2, 1]. Sup-
pose that T : X → X is given by T (x) = x/3 + 2/3. We will prove that
dH(T (A), T (B)) ≤ 1/3 dH(A,B).

First let us compute dH(A,B). With this handy figure:

we can see that the furthest point in A from B is 1/4, while the furthest point
in B from A is 1, making the largest distance 1/2 and so dH(A,B) = 1/2.
Next, we can compute T (A) = [3/4, 5/6] and T (B) = [5/6, 1]. This next

handy figure:
lets us compute dH(T (A), T (B) by noticing that the furthest point in T (A)
from T (B) is 3/4 while the furthest point in T (B) from T (A) is 1, mak-
ing the largest distance 1/6. Thus we see that dH(T (A), T (B)) = 1/6 =
1/3 dH(A,B).

Based on this evidence it would seem that the contracting factor for H(X)
seems like it is going to equal the contracting factor on X itself, and that turns out
to be true. The previous example is a special case of what happens for a general
contraction on X.

Lemma 3.4. Suppose T is a contraction on X with contraction factor c ∈
[0, 1). Then the transformation induced by T on H(X) is also a contraction
mapping with contraction factor c.

Exercise 3.5. The proof of Lemma 3.4 uses the following outline. Once
you have figured out how all the steps work, write them into a formal proof.

(1) Consider any A,B ∈ H(X) and suppose dH(A,B) = δ. Explain
why for every a ∈ A there is a b ∈ B for which d(a, b) ≤ δ.

(2) Compute an upper bound on the Euclidean distance between T (a)
and T (b).

(3) Come up with an argument for why the previous step gives you
a bound on the size of the ε-thickening of T (B) required so that
T (A) ⊆ T (B)ε. (Spoiler alert: that ε should be cδ.)

(4) Make the symmetric argument that computes an epsilon for which
T (B) ⊆ T (A)ε.

(5) Put the previous steps together to show that dH(T (A), T (B)) ≤
cδ = c dH(A,B).
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Of course when we are making fractals what we really care about is collages
made from contractions. We would like to obtain a lemma similar to the previ-
ous lemma that tells us that such a collage is also a contraction, and what the
contraction factor is. The following lemmas will help us get started.

Lemma 3.6. Let A,B,C, and D be elements of H(X). Then dH(A ∪
B,C ∪D) ≤ max{dH(A,C), dH(B,D)}.

Proof. Let dH(A,C) = δ and dH(B,D) = γ, and let ν = max{δ, γ}. By
definition of dH(A,C) we know that A ⊆ Cδ ⊆ Cν ; we also know that Cν ⊆ Cν∪Dν .
By Exercise 3.22 we know that Cν ∪ Dν = (C ∪ D)ν , and thus we have that
A ⊆ (C ∪ D)ν . Similarly, we see that B ⊆ Dγ ⊆ Dν ⊆ Cν ∪ Dν = (C ∪ D)ν .
Putting these facts together we have that A ∪B ⊆ (C ∪D)ν .

In the opposite direction we know that C ⊆ Aδ ⊆ Aν ⊆ (A ∪ B)ν , and that
D ⊆ Bγ ⊆ Bν ⊆ (A ∪ B)ν . This shows us that ν ≥ dH(A ∪ B,C ∪ D) by the
definition of Hausdorff metric using ε-thickening. �

This result extends to any finite unions of elements of H(X) as the next corol-
lary shows. It can be proved by induction on the number of elements in the union.

Corollary 3.7. Let Ai, Bi ∈ H(X) for i = 1, 2, ..., n and let ν =
max
1≤i≤n

{dH(Ai, Bi)}. Then

dH

(
n⋃
i=1

Ai ,

n⋃
i=1

Bi

)
≤ ν.
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Exercise 3.8. Let T1 : X → X be a contraction with contraction factor

c1 and let T2 : X → X be a contraction with contraction factor c2. In this

exercise, fill in the blanks to complete a formal proof that the collage map

T = T1 ∪ T2 is a contraction on H(X).

Proof. Let A,B ∈ H(X). Then T (A) = and T (B) =

by . For i = 1, 2

we know that dH(Ti(A), Ti(B)) ≤ by Lemma .

Applying Lemma we know that

dH(T (A), T (B)) ≤ max{ }

≤ max{ }

This means that dH(T (A), T (B)) ≤ c dH(A,B), where c is defined to be

. Since c ∈ [0, 1) we have completed the proof that T is

a contraction mapping on H(X). �

Exercise 3.9. Consider the transformations in Exercise 1.16, Exercise
1.17, Exercise 1.30, and Exercise 1.37. Using analysis similar to the proof in
Exercise 3.8, determine the contraction factor for each collage map. Write
the proof that your collage is a contraction following the form in Exercise
3.8; there are small details that will need to change (for instance, “Lemma”
might become “Corollary” in a key place, depending on your number of
maps).

Your work in the previous two exercises would replicate nearly exactly to prove
the general case, stated next. Note that while in most of our examples the con-
traction maps have been affine, that is not needed. All that is required is that the
transformations be contractions.

Theorem 3.10. Let Ti : H(X)→ H(X) be a contraction mapping with
contraction factor ci ∈ [0, 1) for all i = 1, 2, ..., n. Then the collage map

T =

n⋃
i=1

Ti is also a contraction mapping on H(X), with contraction factor

c = max{ci such that i = 1, 2, ..., n}.
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Definition 3.11. Let (X, d) be a compact metric space. A (hyper-
bolic) iterated function system (IFS) is given by {X;T1, T2, ..., TK}, where
each Tj is a contraction from X to itself with contractivity factor cj . The
contractivity factor of the IFS is given by c = max{c1, c2, ..., cK}.

3.2. Existence of Attractors for Iterated Function Systems

We are ready to prove the existence theorem for fractals generated by contrac-
tion maps on H(X), which includes those given by collages of contractions (i.e.,
iterated function systems). To prove the theorem we will rely on a lemma from real
analysis that we state without proof. It says that if {Bi}∞i=1 is a nested sequence
of nonempty compact subsets of X, then the limit of the sequence is a nonempty
compact subset of X also.

Lemma 3.12. Let B1, B2, ... be a sequence of elements of H(X) such
that Bi ⊆ Bi−1 for all i = 1, 2, .... Then lim

i→∞
Bi is an element of H(X).

Since B1 ⊇ B2 ⊇ B3... it is clear that the sets in the sequence are getting
smaller; the key fact to note is that this lemma says that they cannot disappear
entirely (although they certainly could converge to a set containing only a point!).

Exercise 3.13. Let X = [−10, 10]. Make up an example of a nested
sequence of elements of H(X), and find its limit.

And now for the big theorem. It is a special case of the contraction mapping
theorem, which in a broad range of cases proves that a contraction map has a unique
fixed point to which the orbit of every point is attracted.

Theorem 3.14 (Existence theorem for fractals). Let X be a compact
subset of Rn or C and let H(X) be its space of fractals endowed with the
Hausdorff metric. Let T : H(X) → H(X) be the collage of contractions
T1, T2, ..., TK on X. Then

(1) There exists a unique A ∈ H(X) for which T (A) = A, and
(2) For any B ∈ H(X),

(3.1) lim
n→∞

T n(B) = A

Before we launch into the proof, notice a few things. First, that part (1)
promises us that a fixed point A exists, and that it is unique. The notation A
is used because it is the “attractor” in the sense of (2): that the orbit of every
B ∈ H(X) converges to it.

Proof. Consider the sequence of elements of H(X) given by {T n(X)}∞n=1. It
is a nested sequence since T (X) ⊆ X, and hence T 2(X) ⊆ T (X), implying that
T 3(X) ⊆ T 2(X), and so on. By Lemma 3.12 we know that lim

n→∞
T n(X) is an

element of H(X) which we will call A. We must show that A is a fixed point of T ,
that it is unique, and that all orbits are attracted to it.
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Since T is a contraction mapping, it is a continuous function and so

T (A) = T ( lim
n→∞

T n(X)) = lim
n→∞

T (T n(X)) = lim
n→∞

T n+1(X) = A,

and thus A is a fixed point of T . The proof that A is unique is the next exercise.
This will prove A is the only fixed point of T and thus completes the proof of part
(1).

Exercise 3.15. Consider a set C ∈ H(X) for which T (C) = C and
let c ∈ [0, 1) represent a contraction factor for T , which exists by Theorem

. Then dH(T (A), T (C)) ≤ . But A and C
are both by T and so that inequality becomes
≤ c dH(A,C). This is only possible if dH(A,C) = . Since dH is a

on H(X), we know that this is only possible if ,
proving that A is the unique fixed point.

The proof of equation (3.1) is the next exercise.

Exercise 3.16. Let B ∈ H(X) and let c be a contraction factor of T .
Prove equation (3.1) by proving that lim

n→∞
dH(T n(B), A) = 0. As part of

the proof, use induction to establish that dH(T n(B), A) ≤ cn dH(B,A).

�

To summarize our findings, we now know the following.

(1) If {X;T1, T2, ..., TK} is an iterated function system with contraction factor
c = max{c1, c2, ..., cK}, then it has a unique fixed point A ∈ H(X).

(2) That fixed point looks like T n(X) for a large enough value of n, and so
(3) In chapter 1, the images for C5,K5, and S5, which were the 5th iterations

of X, look pretty much like the fractal does.

3.3. Two computer algorithms for IFS fractals

3.3.1. Deterministic algorithm. The theory is pretty clear: start with any
initial compact set B and plot T n(B) for as large of an n as your computer can
handle. Here is some “pseudocode” for how you might actually do this; details will
depend on the software you are using.

• Input the functions T1, T2, ..., TK into the computer.
• Input some initial set B0, which could be as simple as a single point.
• Decide how many iterations you want to do and call it something like
numits.

• Compute T numits(B0).
• Display T numits(B0).

For this course we will carry out the algorithm in Mathematica, and you will get
some sample code for that soon.

3.3.2. Probabilistic Algorithm. The probabilistic algorithm for making frac-
tals on the computer is quicker and more efficient than the deterministic one. It
capitalizes on the fact that any set converges to A by applying the individual maps
at random instead of using the entire collage map. We claim (but do not prove)



3.3. TWO COMPUTER ALGORITHMS FOR IFS FRACTALS 35

that the orbit of any point under a random application of the Tj ’s will trace out
the entire fractal A. This may be believable since the collage map applied to any
one-element set converges to A. Let us present the algorithm and then revisit this
issue and the issue of relative efficiency.

Suppose we have the iterated function system {X;T1, T2, ..., TK}. The algo-
rithm begins with any initial point x0 ∈ X and computes its orbit a little differently
than in Chapter 1, since T is not a map on X and we need to account for using all
the Tjs. For each n ∈ 1, 2, 3, ... we select an index jn ∈ {1, 2, ...,K} randomly and
apply that transformation to compute xn = Tjn(xn−1). We compute and plot the
entire orbit of x0 up to numits2 iterations, where numits2 will be an extremely
large number.

In advance of writing code there are two decisions to be made. It is necessary to
decide on probabilities p1, p2, ..., pK to use to select the transformations; of course

we need

K∑
j=1

pj = 1. Higher probabilities mean more visits to the region that

transformation covers, so the probabilities do affect the final images. That can be
used as an advantage, for instance by giving smaller regions lower probabilities.

The other decision is what initial point x0 to use. If the initial point is chosen
from inside of A (for instance if it is the fixed point of a Tj), then the entire orbit
of x0 will be in A as you will prove in exercise 3.29. However it is not necessary
to choose x0 carefully since after a few iterations it must be close to A anyway, as
you will prove in exercise 3.30.

Here is some pseudocode for the probabilistic algorithm.

• Input the Tj ’s, pj ’s, and numits2.

• Generate a sequence {jn}numits2n=1 of elements of {1, 2, ...,K} according to
the probabilities using your software’s random number generator.

• Input x0 and compute the set {x0, x1, x2, ..., xnumits2} according to xn =
Tjn(xn−1).

• Plot the subset O = {xnmin, xnmin+1, xnmin+2, ..., xnumits2}, where nmin
ensures the orbit is close enough to A. We may use nmin = 10 or 20.

One thing that is clear is that all of the points in O are close to points in A, as
long as nmin is chosen to be moderately large. You can decide on the size of nmin
by looking at the contraction factor of T and the maximum distance M in X. If
you want the points to be within ε of A, simply choose nmin so that cnminM ≤ ε.
If you take ε to be pixel size and compute the corresponding nmin, then you can
be sure that the points in O are, up to computer-visible resolution, points in A.

The harder thing to justify rigorously is that O fills up A in a representative
fashion. In fact it will not if any of the pis are set to be zero. Otherwise O should
visit each Tjs region about pj ·numits2 times unless a highly improbable sequence of
indices was selected by the random number generator (which is possible, of course).
Ordinarily, then, we’d expect it to fill in each Tjs part of the image of A pretty well.
The experimenter can adjust the pjs if they feel the image is not representative.

3.3.3. A comparison of the two algorithms. The probabilistic algorithm
is more efficient than the deterministic algorithm for getting a good picture of the
attractor. It is beyond the scope of this course to prove that, but let’s try and get
a sense of why it is true. In everything that follows let (X;T1, ..., TK) be an IFS
with contraction factor c = max{c1, ..., cK}.
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Exercise 3.17. Suppose you are using the deterministic algorithm on
the initial set {x0} for some x0 ∈ X.

(1) What is the maximum number of elements in the set T numits({x0})?
(2) Let’s make a really rough approximation by calling an “operation”

the application of a single Tj to a single element of X. How many
operations will the computer have to perform in order to compute
T numits({x0})?

So you can see that numits has to be kept fairly small to make sure that
your computer doesn’t crash and can do all those operations in a timely fashion.
However, if numits is small, T numits({x0}) may not be particularly close to A.

Exercise 3.18. Compute an upper bound on dH(T numits({x0}), A). (It
is convenient to let M represent the maximum Euclidean distance between
any two points in X.) Under what circumstances might this distance not
be particularly small?

Now let’s compare those results with what happens in the probabilistic algo-
rithm.

Exercise 3.19. Now suppose that you are beginning with an arbitrary
x0 ∈ X and using the probabilistic algorithm to compute the orbit out to
numits2.

(1) Using the same rough definition of an operation as before, how
many operations does it take to compute the orbit of x0 up to
numits2?

(2) If you cut off the first nmin− 1 elements of the orbit and consider
the set O = {xnmin, xnmin+1, xnmin+2, ..., xnumits2}, give an upper
bound on min{ε such that O ⊂ Aε}.

(3) Suppose nmin is greater than the number of iterations numits used
in the deterministic algorithm, and suppose numits2 is about the
same size as the number of points in T numits({x0}). Do you believe
T numits({x0}) ought to be a better approximation of A than O is,
or is O the better approximation of A? Explain.

3.4. The Collage Theorem

Suppose that you have an image L that you would like to store in as little
space as possible. Or maybe you just want to be able to replicate L using an
iterated function system for fun. The collage theorem, proved by Barnsley in 1985
and appearing on page 94 of [Bar12], gives you a way to measure how close the
attractor of an iterated function system will be to your target image L.
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Theorem 3.20 (The Collage Theorem). Let X be a compact subset of
R,Rd, or C and let L ∈ H(X) be given. If (X;T1, ..., TK) is an IFS with
contraction factor c and attractor A, then

dH(L,A) ≤ dH(L, T (L))

1− c
.

How is this theorem used? It certainly does not tell you how to get an IFS
for which dH(L, T (L)) is small. You basically have to experiment with that, and
there is literature out there containing strategies. You have full control over how
many maps you want to use, their contraction factors, etc. But no matter what
IFS you come up with from that process, the closeness of A to your target image
L is bounded by how close L was to T (L).

Exercise 3.21. Will an IFS with a large contraction factor or a small
contraction factor do a better job of approximating L? Does the number of
Tis you use matter? Explain.

3.5. Exercises

Exercise 3.22. Suppose H(X) is a space of fractals with A,B ∈ H(X) and
δ ≥ 0. Prove that

(3.2) (A ∪B)δ = Aδ ∪Bδ
Exercise 3.23. Suppose A and B are elements of some space of fractals H(X)

and let ε > 0. Prove or give a counterexample to:

(A ∩B)ε = Aε ∩Bε
Exercise 3.24. Suppose T : H(X)→ H(X) is a collage of the maps Ti : X →

X, i = 1, 2, ...,K. Prove that if A ⊂ B for A,B ∈ H(X), then T (A) ⊂ T (B).

Exercise 3.25. Give an example of a transformation T : H(X) → H(X) for
which there are A,B ∈ H(X) with A ⊂ B, yet T (A) 6⊂ T (B).

Exercise 3.26. Make an IFS with three transformations in R2 that we haven’t
seen in class, and put it into the deterministic algorithm in mathematica. Please
turn in your affine maps and your image of the attractor.

Exercise 3.27. Consider the spiral for Exercise 1.36. Here’s a fun fact: the
number of arms does not depend on the central transformation that has a large
contraction factor. Instead it depends on the number of highly contractive trans-
formations you put around the outside. Adapt the IFS for Exercise 1.36 to have
three arms, and put your answer into the probabilistic mathematica code and see
what the attractor looks like. Adjust until you are happy with your image.

Exercise 3.28. In this example you are going to play with probabilities when
making the Sierpinski triangle. Compare and contrast the number of iterations
necessary to produce a “good” view of the triangle when you use the following
probabilities:

(1) p1 = .33, p2 = .33, p3 = .34.
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(2) p1 = .2, p2 = .46, p3 = .34.
(3) p1 = .1, p2 = .56, p3 = .34.

Exercise 3.29. Let (X;T1, ..., TK) be an IFS and let {jn}numits2n=1 be a sequence
of indices from 1, 2, ...,K as would be selected for the probabilistic algorithm. Sup-
pose a is an element of the attractor A of the IFS. Prove that the orbit of a in the
algorithm is contained in A.

Exercise 3.30. Let (X;T1, ..., TK) be an IFS with attractor A and let {jn}∞n=1

be a sequence of indices from 1, 2, ...,K as would be selected for the probabilistic
algorithm (except infinite, theoretically). Suppose x0 ∈ X and compute its orbit
{xn}∞n=1 as in that algorithm. Prove that l(xn, A) = min{d(xn, a) such that a ∈ A}
tends to 0 as n→∞.



CHAPTER 4

Dimensions

4.1. Motivating examples, or, Fun with length and area.

Let’s consider this question: How big is the Koch curve? We can estimate its
length by computing the lengths of the curves Kn introduced in Example 1.2 and
shown in Figure 2.

Recall that we began with K0 as a line segment of length 1, for concreteness
suppose it is on the x-axis from x = 0 to x = 1. To construct K1, four affine
transformations with contraction factor 1/3 are used. That means K1 is the union
of four segments of length 1/3 and thus has length 4/3. The union of four copies
of K1, scaled by 1/3, make up K2. Each scaled copy has length 4/9, but there are
four of them end-to-end and so K2 has length 16/9. At the next stage, four copies
of K2, which have been scaled by 1/3 and thus have length 16/27, union together
to become K3, which then has length 64/27. In general we see that Kn will have
length 4n/3n. Since the Koch curve is lim

n→∞
Kn (where the limit of course is in the

Hausdorff metric), we can see that its length is lim
n→∞

4n/3n =∞.

We can consider this result to mean that we are not really measuring the size
of the Koch curve correctly. It’s a nice compact set, and to call it’s size infinite
seems not to give a lot of geometric information about the curve. We’ll be able to
get finer information using the idea of fractal dimension.

Exercise 4.1. Consider the middle-thirds Cantor set introduced in Ex-
ample 1.1 and shown in Figure 1. Compute its length with the method used
for the Koch curve, i.e. by finding the lengths of C0, C1, C2, ... and taking
their limit.

Exercise 4.2. Consider the Sierpinski triangle introduced in Example
1.3 and shown in Figure 3. Compute its area with the method used for the
Koch curve, i.e. by finding the areas of S0, S1, S2, ... and taking their limit.

Since the Koch curve has infinite length in a finite area, maybe we should have
tried to compute its area rather than its length. However, it seems fairly clear that
the area is zero. You might try to argue that point as follows: The area of any Kn

is clearly 0, so it stands to reason that the area of the limit is 0 also. However, in a
moment we will see an example of a “space-filling curve”, where each approximating
set has zero area but the limit is a set with nonzero area.1

1Notice that this calls into question the length and area computations we’ve done so far.

39
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A different way to approximate the area of the Koch curve, and one which will
generalize to our study of fractal dimension, involves covering each Kn with rectan-
gles, or ‘boxes’, and compute those areas instead. Of course this will overestimate
the area, but we’re going to get 0 anyway and the example is instructive.

So, let’s be ridiculous and cover K0 with the box [0, 1]×[−.5, .5], which is shown
on the left of figure 1. The area of the box is one and that is an upper bound on
the area of K0.

Figure 1. The first and second approximations of the Koch curve
by boxes.

To construct a box-covering of K1, simply apply the collage to the box that
covers K1. We see in the figure that K1 is covered by four copies of this box, scaled
in length by 1/3, but that means that the area of each rescaled box is 1/9. Again
we shall be ridiculous and fail to account for the overlap between the boxes, getting
an overestimate of the area of K1 by adding the areas of the four boxes together.
This gives us that the area of K1 is less than 4/9.

Exercise 4.3. (1) Using the same technique, give an upper bound
on the area of K2.

(2) If necessary, repeat for K3, K4, etc. until you can generalize your
answer to an upper bound on the area of Kn.

(3) Determine the area of the Koch curve.
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Example 4.4. Here is an iterated function system called the Heighway
Dragon (also known as the dragon curve). We begin with the vertical line
segment connecting the origin to (0, 1), and use the affine maps

T1

([
x
y

])
=

(
.5 −.5
.5 .5

)[
x
y

]
T2

([
x
y

])
=

(
−.5 −.5
.5 −.5

)[
x
y

]
+

[
0
1

]
This IFS may seem simpler than that of the Koch curve, but the result

looks really different. The reason is that this curve folds back to touch itself
repeatedly. Figure 2 shows the first several applications of T , and figure 3
shows H13 and the fixed set.

Suppose we were to overestimate the area of the Heighway dragon by
covering H0 with a rectangle. We would not have a sequence of covers that
converge to 0. What would happen instead is more subtle, and we delay
discussing it for now.

Side note: You can make iterations of the Heighway Dragon using a
long, thin strip of paper. If you fold the paper in half and open it up again,
you have a scaled version of H1. If you fold it twice, being careful to fold
the same way both times, then when you open it up so that the folds are at
right angles you get H2. Doing a bunch of iterations is a fun party trick.

Figure 2. The first several iterations of the collage map. Points
at the origin and at (0, 1) are marked for reference.

Exercise 4.5. Make a really good paper Heighway dragon to show the
class. Explain the questions you had or problems you solved to do it.



42 4. DIMENSIONS

Figure 3. The left is H13; the right is the fixed set of the IFS.

4.2. The idea of fractal dimension

Everyone has an intuitive idea of dimension: one-dimensional objects look like
(possibly deformed) line segments; two-dimensional objects look like (possibly de-
formed) pieces of planes; three-dimensional space is the space we live in, where there
are three independent directions one can move. In linear algebra a mathematical
definition is given for vector spaces: it is the number of basis vectors required to
define the space. In a topology class, objects are n-dimensional if they are locally
homeomorphic images of Rn in a technical sense.

In calculus we learn an excellent strategy for calculating the length, area, or
volume of an object we will call A. To compute the length L(A), we approximate it
with line segments of length ∆x; the length of A is approximately the sum of those

segments, i.e. L(A) ≈
∑

# segments

(∆x)1. We let ∆x→ 0 and if the limit exists in a

certain sense it becomes an integral that represents the length of the object. This
is where the arclength formulae that you learn in calculus come from.

If we want to estimate the area of A, we can cover it with squares of side
length ∆x; the area of each square is (∆x)2 and so the area A(A) is approximately

A(A) ≈
∑

# squares

(∆x)2. Again in a calculus class we would let ∆x→ 0, and if the

limit existed in a certain sense we’d get the area of A.
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The same process works to estimate the volume of A, covering it with cubes
of side length ∆x. The volume of such a cube is (∆x)3, so the volume V(A) is

approximately V(A) ≈
∑

# cubes

(∆x)3.

The general term we will use for a line segment, square, cube, or an n-dimensional
analogue thereof will be a box. The n-dimensional volume of such a box will be it’s
side length to the nth power. Thus to estimate the n-dimensional volume of an
object A, we approximate the set with boxes with n-volume (∆x)n, arriving at the
formula

Vn(A) ≈
∑

# boxes

(∆x)n

Clearly, the dimension of a box appears as the exponent of its volume
calculation, with length corresponding to exponent 1, area to exponent 2, ordinary
volume to exponent 3, and n-dimensional volume to exponent n.

There is nothing to stop us from trying to use the calculus procedure to compute
the n-dimensional volume of an object whether or not it is n-dimensional. Indeed,
calculating the n-volume of an object that isn’t fundamentally n-dimensional yields
predictable results that we are beginning to understand.
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Example 4.6. Let A be the circle x2 + y2 = 1. We use the above
process to compute the length of A. Let us estimate A using an inscribed
regular k-gon, so that the circle is approximated by k line segments. As
we let k → ∞, the approximation will converge in Hausdorff metric to the
circle. A k-gon is pictured for k = 11 on the left of figure 4.

Each edge of the k-gon has length ∆xk and can be seen as the short side
of an isosceles triangle with long sides 1 and angle 2π/k, which means by that

∆xk = 2 sin(π/k) and so the circumference is approximately
∑

# segments

(∆xk)1 =

2k sin(π/k), and from calculus we know (and you will verify in a homework
exercise) that the limit as k →∞ is 2π.

An alternative trick to determine ∆xk, perhaps a bit circular, is to use
the fact that the arc subtended by an angle 2π/k in the unit circle has length
2π/k. Since ∆xk is approximately the length of that arc it follows that
∆xk ≈ 2π/k, with the approximation becoming more and more accurate
as k → ∞. There are k sides to the k-gon, so the length of the circle is

approximately
∑

# segments

(∆xk)1 = k∆xk ≈ k(2π/k) = 2π. Either way, as

k →∞, our approximation approaches 2π, as it should.

Exercise 4.7. Let’s now cover the circle with squares whose
diagonals are the sides of the regular k-gons above. We picture the
covering for k = 11 on the right of Figure 4.

(1) Compute the approximate length of the side of each square
using the second approximation of the diagonal, which was
2π/k. Use this to approximate the area of each square.

(2) Compute the approximation of the area of A using your
squares.

(3) Letting k →∞, show that the area of A is 0.

There was no particular reason to choose the covering of the circle by
squares to look like the left side of figure 4. We could instead have had each
edge of the k-gon be a side of the square, or the midline of the square like
we did for the Koch curve.

Exercise 4.8. Suppose we did the covering of the circle using
the midline version of the square covering. Compute the area of A
again using this covering.

When doing box-related calculations like these it is very important that
the answer be independent of the placement of the boxes. There exist bizarre
examples that fail to have this independence, but we will not encounter
any. It is also important that the shape of the boxes not matter; that is,
if we approximated the shape circles, or rectangles, or sets with different
dimensions, we’d always get the same answer as the diameters of the sets
went to 0. In the wild woolly world of analysis there exist examples for
which this is not true. Such examples will not concern us in this course.
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Figure 4. Approximating the circle with boxes of dimension 1 and 2.

Exercise 4.9. Consider the line segment L connecting the origin to

the point (1, 1, 1) in R3. For integers k let ∆xk =
√

3/k. Calculate the
length, area, and volume of L using the calculus method. Namely, for n =

1, 2, 3, cover L with n-boxes of side length
√

3/k, compute the estimate∑
# boxes

(∆xk)n, and take the limit as k →∞.

Exercise 4.10. Now let A be the unit square lying in the x−y plane of
R3. Compute the length, area, and volume of A using boxes of side length
∆xk = 1/k. Note: your estimate of the square using line segments will
leave a lot of the square uncovered, but in the Hausdorff metric limit the
approximation by line segments will converge to the square.

In each one of the examples we have seen there were three possible outcomes: 0,
a finite number, or∞. We got 0 when we overestimated the dimension of A, we got
∞ when we underestimated the dimension of A, and we got a finite number when we
got the right dimension. Except for the Koch curve: we got 0 for 2 dimensions and
∞ for one dimension, suggesting that the correct dimension is somewhere between
1 and 2.
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Exercise 4.11. Suppose we are covering the approximations Kj of the
Koch curve with boxes of side length ∆xk, except that we imagine the boxes
to be s-dimensional in the sense that they have volume (∆xk)s.

(1) We cover K0 by a box with side length 1 as before. The s-volume of
that box is then 1s = 1. When we apply T to this box, we get four
boxes, where the side length of each is now ∆x1 = 1/3. Thus our s-

dimensional volume approximation for K1 is then
∑

# boxes

(∆x1)s =

4(1/3)s = 4/3s.
(2) The side length of each box making up the cover for K2 has length

1/9. Compute
∑

# boxes

(∆x2)s.

(3) Find the formula for the s-volume of the cover of Kj , for j ≥ 2.
(4) We want the limit of that s-volume to be a finite positive number

C. Solve for s. (Hint: set your answer from (3) approximately
equal to C and solve for s.)

4.2.1. Four tenets of a good notion of dimension. A really good defi-
nition of fractal dimension ought to have a number of properties that make sense.
The two definitions we will make will satisfy some or all of them in some or all
types of examples. These four tenets are described in the lecture notes [FN], p.
102. Let’s suppose we have called our candidate for fractal dimension Dim.

• (Familiarity) The dimension of Rn should be n. Moreover, line segments
and vector spaces of linear algebraic or topological dimension 1 should
also have a fractal dimension of 1. Similarly a square should have fractal
dimension 2, a cube dimension 3, and so on.

• (Monotonicity) If A ⊂ B, then Dim(A) ≤ Dim(B). In particular this
means that if A ⊂ Rn, then Dim(A) ≤ n.

• (Stability) The process of taking unions of sets should not affect the
fractal dimension unpredictably. Thus we prefer our definition of dimen-
sion to satisfy Dim(A ∪B) = max{Dim(A), Dim(B)}.

• (Invariance) Suppose T : X → X is an isometry like rotation, reflection,
or translation, or some other ‘nice’ map like a similarity. Then although
T might affect the size of A, it should not affect its fractal dimension.
Thus we prefer that our definition of fractal dimension satisfy, for such a
map T , that Dim(T (A)) = Dim(A).

4.3. Similarity dimension

We begin with the simplest type of fractal dimension to compute: the simi-
larity dimension. An advantage is that it can be computed for any IFS once the
contraction factors of its transformations are known, but a disadvantage is that it
is accurate2 only in some of those cases. Fortunately, a many of the examples we
have been considering are ones for which the similarity dimension makes sense.

2Ideally, a set’s similarity dimension would agree with its other kinds of dimensions in a wide
swath of examples.
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4.3.1. Similarity dimension: one scaling factor. We know that if we scale
a figure by 1/2, then its length scales by 1/2, but its area scales by 1/4, and its
volume scales by 1/8, and by extension its volume in dimension s scales by (1/2)s.
If we know that a set such as the Koch curve is made up of a certain number of
copies of itself, all scaled by the same amount, we can use that fact to solve for s
exactly. This is the foundation for our definition of similarity dimension.

Example 4.12. Let us denote the Koch curve by K and its s-volume
by Vs(K). We know that K is the fixed point of a collage map T composed
of four maps, each with contraction factor 1/3, i.e., that T (K) = T1(K) ∪
T2(K) ∪ T3(K) ∪ T4(K). We also know that Vs(Ti(K)) = Vs(1/3(K)) =
(1/3)sVs(K). This implies that

Vs(K) = 4(1/3)sVs(K)

This is an equation we can solve for s. We see quickly that 3s = 4, which
means that s ln 3 = ln 4, and so s = ln 4/ ln 3.

We have now arrived at the dimension ln 4/ ln 3 for the Koch curve using both
parts of the Existence Theorem: in Exercise 4.11 we did it by seeing K as the limit
of sets under repeated iteration of T , and in the previous example we did it using
the fact that K is the fixed point of T . We can be fairly confident that this number
is representative of the fundamental ‘size’ of the Koch curve.

Exercise 4.13. Use the technique of example 4.12 to compute the sim-
ilarity dimension of the middle-thirds Cantor set C.

Exercise 4.14. Use the technique of example 4.12 to compute the sim-
ilarity dimension of the Sierpinski triangle S.

Computation of similarity dimension is appropriate for sets A ∈ H(X) that are
unions of rescaled copies of themselves, and the scaling factors don’t all have to be
the same. However, the transformations have to be similarities in the sense of your
high school geometry course. Let us take a moment to review them.

4.3.2. Similarity transformations. Although in this course we focus on
compact subsets of Euclidean space, the following definition of similarity holds
in any metric space.

Definition 4.15. A transformation T : X → X is a similarity if there
is a positive c ∈ R such that for every x, y ∈ X, d(T (x), T (y)) = c d(x, y).
We call c the similarity ratio of T .

In Euclidean space, transformations are similarities if they are certain kinds of
affine maps. In one dimension, any affine map will do as long as it is invertible.

Exercise 4.16. Prove that T : R→ R is a similarity if and only if there
are constants a, b ∈ R with a 6= 0 such that T (x) = ax+ b.
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In two dimensions, similarity transformations are the ones that you actually
learned about in high school geometry: they take triangles to similar triangles
(that is, they preserve angles). There are several ways to identify when an affine
transformation is a similarity, of which we give three. The first two are geometric
and the third comes from linear algebra.

One way is to look at what the transformation does to the standard basis
vectors ~e1 and ~e2. If it sends them to vectors that are orthogonal and that have the
same length, then the transformation is a similarity. This trick works to identify a
similarity in any dimension.

Another way is to know all possible isometries of R2, that is, all possible maps
that don’t change distance between points. Those are simply the translations,
rotations, and reflections. If your affine map is a scaling factor times one of these
isometries, then it is a similarity.

A linear algebraic way to determine if a transformation in any Rd is a similarity
is to determine the eigenvalues and eigenvectors of the underlying linear transfor-
mation. The matrix must be diagonalizable in that it must have a basis of (possibly
complex) eigenvectors, and its eigenvalues must all have the same magnitude. Un-
der those conditions the eigenvalues stretche the basis vectors by the same amount,
and thus stretches every vector in Rd by the same amount.

Exercise 4.17. Consider the transformations in the collage for Barns-
ley’s fern. Determine which, if any, are similarities. If it is a similarity,
determine the scaling factor.

Notice that a similarity transformation is a contraction whenever c ∈ [0, 1).

4.3.3. Similarity dimension: multiple scaling factors. Now let us con-
sider the fractal dimension of the attractor of the IFS (X;T1, ..., Tn). If Ti is a
similarity of X for i = 1, 2, ...n then it is an appropriate system on which to make
a definition of similarity dimension. The similarity dimension DimS(A) will be
defined via the scaling factors of its contraction maps in a manner quite similar to
our discussion of the Koch curve.

When we computed the dimension of the Koch curve in example 4.12, we needed
to solve the equation

(1/3)s + (1/3)s + (1/3)s + (1/3)s = 1,

which we of course simplified to solving 4(1/3)s = 1. In exercise 1.30 we saw a
Cantor-set-like example made of transformations of different scaling factors that
makes a good test case for similarity dimension.
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Example 4.18. Let X = [0, 1], T1(x) = x/4, T2(x) = x/3 + 1/3, and
T3(x) = x/4 + 3/4. The attractor A of the IFS (X;T1, T2, T3) is pictured in
exercise 1.30. If we have the correct dimension s of A calculated, then its
volume Vs(A) must satisfy

Vs(A) = Vs(1/4A) + Vs(1/3A) + Vs(1/4A),

giving rise to the equation

Vs(A) = (1/4)sVs(A) + (1/3)sVs(A) + (1/4)sVs(A).

Thus the dimension s must be the solution to

(1/4)s + (1/3)s + (1/4)s = 1.

Mathematica finds the approximation s ≈ 0.856738 using the expressiona

FindRoot[(1/4)ˆs + (1/3)ˆs + (1/4)ˆs - 1, {s, 1}]

aI told it to look for the root near s = 1 since s should be somewhere between 0 and 1.

So we see that when the scaling factors are different we arrive at the equation

cs1 + cs2 + · · ·+ csn = 1.

We need to know that that equation has a unique solution, which is the content of
this lemma that we state without proof.

Lemma 4.19 (see [Edg90], p. 105). Suppose c1, c2, ..., cn are numbers
in [0, 1) for all i. Then there is a unique number s ≥ 0 such that cs1 + cs2 +
...+ csn = 1. The number s is 0 if and only if there is only one nonzero value
for ci.

An unfortunate but unavoidable fact is that in general there is no way to solve
for s unless the ci’s are related to each other in some way. However it is very easy
to get your computer or calculator to give you an approximation that is accurate
to as many digits as you like. Here is the official definition of similarity dimension.

Definition 4.20. Let A be the attractor for an iterated function system
(X,T1, T2, ..., Tn) for which each Ti is a similarity with similarity ratio ci ∈
[0, 1). The similarity dimension of A, denoted DimS(A), is defined to be
the solution s to the equation

cs1 + cs2 + ...+ csn = 1.

Exercise 4.21. Compute the similarity dimension of the spiral fractal
from exercise 1.36. Give the equation that it solves and obtain a numerical
estimate of its value.

Exercise 4.22. The Heighway dragon is the union of two copies of
itself under the two transformations that make up its collage map, given in
example 4.4. Compute its similarity dimension.
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Exercise 4.23. Compute the equation for the similarity dimension of
the fractal in exercise 1.37 and give an numerical estimate for its dimension.

There is a clever way to solve for the similarity dimension in the last exercise
exactly that capitalizes on the fact that 1/4 = (1/2)2.

Exercise 4.24. In the equation obtained for the similarity dimension
in the previous exercise, let x = (1/2)s. Rewrite the equation in terms of
x and solve using the quadratic formula. This gives a solution for x that
can be solved for s exactly. Give the exact solution for s and approximate
it with a calculator value.

Here is a simple example where the similarity dimension does not do so well.

Example 4.25. Let X = [0, 1], T1(x) = 2x/3, and T2(x) = 2x/3 +
1/3. Each of T1 and T2 are similarities and so the definition of similarity
dimension applies and we find that DimS(A) is the solution s to 2(2/3)s = 1.
Thus DimS(A) = ln 2/ ln 1.5 > 1, a troubling result. Because of the amount
of overlap, it turns out that T (X) = X and so the attractor A of T is all
of [0, 1]. By the tenet of familiarity, we should therefore have arrived at the
dimension of A as being 1. We also failed the tenet of monotonicity: the
dimension certainly should not have exceeded 1 since A is a subset of R.

The problem evident in this example is that its IFS is overlapping. Later in this
chapter we will define what if means for an IFS to be totally disjoint or just-touching.
The similarity dimension of an IFS satisfying either of those two conditions will be
seen to have an ‘accurate’ similarity dimension.

So we see some obvious benefits and obvious drawbacks to our definition of
similarity dimension. The main benefits are that it is quite easy to compute, at least
numerically, and that it is quite natural for the examples for which it is defined.
There are a few drawbacks. One is that it is not defined for iterated function
systems such as Barnsley’s fern, where the collage contains transformations that
are not similarities. Another is that even when it is defined, there are situations
such as our previous example where the result is misleading. The good news is that
it is possible to write down which situations give us trouble, and that the number
obtained from the equation for similarity dimension has meaning even in cases like
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the fern. To discuss this further we need to think about a more general definition
of dimension.

4.4. Box-counting dimension

Let A ⊂ Rd be a compact set. A key idea necessary to compute dimension of
A is how many boxes of a given side length are needed to cover A. Let us co-opt
the notation we used earlier for balls of radius ε and let

B(x, ε) = box of side length ε centered at x

In this definition we mean that a box in R is an interval of length ε with x at its
center; in R2 it is a square of side length ε with x at its center, in R3 it is a cube,
and so on. So the boxes are easy to picture even when their s-volume is not.

Definition 4.26. Let A ∈ Rd be compact and let ε > 0. The smallest

positive integer N for which A ⊂
N⋃
n=1

B(xn, ε) is called the ε-covering number

of A and is denoted by N (A, ε).

Let us take a moment to parse this definition. For any integer, say K, we
can choose any K points in X to call x1, x2, ..., xK . Those points can be taken to
be the centers of closed boxes of radius ε; in that case the union of all of those

boxes will be some subset

K⋃
n=1

B(xn, ε) of X. Maybe our set A is in that union

and maybe it is not. Maybe we should have made a more judicious choice for our
centers. What is clear is that there are infinitely many choices of K and then
(mega-uncountably) infinitely many choices for x1, x2, ..., xK we could make for
the centers. In this definition we consider all of them simultaneously, focusing in

particular on choices where A ⊂
K⋃
n=1

B(xn, ε). We ask ourselves the question, what

is the smallest possible value of K for which A ⊂
K⋃
n=1

B(xn, ε)? The answer to that

is N (A, ε).

Example 4.27. Let A ∈ R2 be the line connecting the origin to (1, 1)
and suppose that ε = 1. Then N (A, ε) = 1 because we can take x1 to be
the midpoint (1/2, 1/2). The box of side length ε will equal the unit square
and thus contains A.

Slightly more interesting might be to take ε = 1/2n. In this case we can
space out our centers along A to see that we need 2n boxes to cover A.

Exercise 4.28. Verify the example for n = 2 and n = 3. In both cases

make a sketch of

N⋃
n=1

B(xn, ε). Write a formula for placing the centers for a

general n.
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Of course in the previous examples the ε was selected to be particularly nice
relative to the set A. The result was that we were able to cover A without needing
much overlap of the boxes. In general the fit won’t be quite as nice, as you see in
the next exercise.

Exercise 4.29. Continue with example 4.27, this time letting ε = e−1

and ε = π−1.

Example 4.30. Let A be a square of side length 1 in R2. It doesn’t
matter which one, but for concreteness center it at (1/2, 1/2). Consider
ε = 1/4. Then N (A, ε) is 16 because we need 16 squares of that side length
to completely cover the A.

Exercise 4.31. In the previous example, consider ε = 1/8 and deter-
mine N (A, ε). Compare and contrast to your answer for the same epsilon
for the line connecting the origin to (1, 1).

The fact that N (A, ε) is finite for any A ∈ H(X) is a consequence of compact-
ness. (Indeed, the formal definition of compactness is that any open cover contains
a finite subcover.)

Notice that unless A is a finite set it will be true that N (A, ε)→∞ as ε→ 0.
The real question is, how does it go to infinity? To give this question meaning,
compare and contrast examples 4.27 and 4.30. It is clear that they will go to infinity
at quite different rates, and this is related to the fact that they are fundamentally
of different dimensions. The main diagonal is one-dimensional, whereas the square
is two-dimensional; this fact appears in the covering numbers for various epsilons.

Exercise 4.32. Let C be the middle-thirds Cantor set and consider the
subset of R2 given by

A = {(x, y) such that x ∈ C and y ∈ [0, 1]}
The set A is pictured in figure 5 below. Let εn = 1/3n. Compute N (A, εn)
for n = 1, 2 and give a formula for a general n.

Exercise 4.33. Let A be a compact subset of Rd and let ε > 0. Suppose
that you are given N (A, ε) and let Vs(A) denote the s-volume of A.

(1) Given an approximate equation of Vs(A) in terms of N (A, ε). That
is, fill in the right side of the expression Vs(A) ≈

(2) Solve your approximate equation for s, treating your ≈ sign as an
equals sign.

(3) Your approximate equation must be true for all ε > 0, and in fact
becomes increasingly accurate as ε → 0 since the approximation
by boxes becomes more accurate. What expression do you get for
s in the limit?
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Figure 5. The set A for exercise 4.32.

This exercise leads us directly to another definition of dimension, simply called
fractal dimension in [Bar12, p. 173] and box-counting dimension in [FN, p. 118].

Definition 4.34. Let A be a compact subset of Rd. The box-counting
dimension of A is defined to be

DimB(A) = lim
ε→0

(
ln(N (A, ε))

ln(1/ε)

)
,

provided this limit exists.

The limit does not always exist, in which case it can be convenient to look
at the “upper” and “lower” box dimensions instead, which are defined in terms of
lim sup and lim inf. We will not pursue that issue further here, but the interested
reader can refer to [PC09, p. 87] or [Fal06, p. 41] for more details.

Exercise 4.35. Let X be the unit square and let A = {a, b, c} be any
set of three nonequal points in X. Compute DimB(A).

It can be difficult to compute N (A, ε) for general ε in many cases, making the
limit in our definition of box-counting dimension intractable to use. If the limit
exists, there are a number of equivalent ways of computing it, some of which are
summarized in [Fal06, p. 43] and in the Box Counting Theorem of [Bar12, p. 175].3

Of particular interest to us is the fact that instead of letting ε→ 0 continuously it
suffices to choose a constant M > 1 and let εn = 1/Mn in our computations of the
box-counting dimension. We have the following lemma that makes the computation
convenient.

3I should probably expand the boxes-in-a-grid idea that is used for approximation of the
dimension for later versions of these notes.
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Lemma 4.36. Let A be a compact subset of Rd and let M > 1. If the
box-counting dimension of A exists, then

DimB(A) = lim
n→∞

(
ln(N (A, 1/Mn))

n ln(M)

)

Exercise 4.37. Fill in the blanks to prove the lemma.

Proof. Let us assume that DimB(A) exists. If that is the case, then
since the limit exists as ε goes to 0 it must also exist when we let ε = 1/Mn

and let n→∞ because in that case 1/Mn .
a Thus we see that by definition DimB(A) = lim

ε→0

( )
,

which by substituting ε = 1/Mn becomesDimB(A) = lim
n→∞

( )
.

By applying , the denominator becomes ,
which finishes the proof. �

aThe interplay between continuous and sequential limits requires rigorous treatment in
an analysis class, but in this situation there is no logical problem. A logical problem

could arise if we tried to argue that a limit existing for ε = 1/Mn as n→∞ implied that

it existed for ε → 0. We’re not doing that here. Our sequence of εs is going to 0 along
with the rest of them.

Exercise 4.38. Compute the box-counting dimension of the Koch curve.

Exercise 4.39. Compute the box-counting dimension of the example
in exercise 4.32.

4.5. When the dimensions are equivalent

Box-counting and similarity dimension agree when the set A is the attractor of
an iterated function system that not only is made of similarities, but also satisfies
one of the first two conditions given in this definition.

Definition 4.40. Let (X;T1, ..., Tn) be an iterated function system and
let A be its attractor. The iterated function system is said to be totally
disconnected if Ti(A) ∩ Tj(A) = ∅ for all i 6= j with i, j ∈ {1, 2, ..., n}. It is
said to be just-touching if there is an open seta O ⊂ A for which

(1) Ti(O) ∩ Tj(O) = ∅ for all i 6= j with i, j ∈ {1, 2, ..., n}, and
(2) T (O) ⊂ O. If the IFS is neither totally disconnected nor just-

touching it is said to be overlapping.

aA set is open if its complement X/O is closed.
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Example 4.41. The middle-thirds Cantor set satisfies the definition of
totally disconnected since T1(C) ∩ T2(C) = ∅.

Exercise 4.42. Determine whether the Sierpinski triangle and Koch
curve are totally disconnected. If they are not, give elements of A that are
in more than one image of A.

The just-touching definition is a bit more subtle but isn’t so bad when you
understand it. Basically what it is saying in a mathematically precise way is that
the attractor is allowed to overlap just on its “boundary points”. The points you
gave in the last exercise are such boundary points. In such a situation, the set O
can be taken to be the part of the attractor that is on the “inside” in a way we will
see in the next example. When the collage is applied to it, it stays on the inside and
the images of the individual maps in the collage do not overlap. That is enough, it
turns out, to ensure that the dimension computation is accurate.

Example 4.43. We construct the set O for the Sierpinski triangle as
follows. Here X is the unit square and S denotes the Sierpinski triangle. Let
P ⊂ X denote the right triangle connecting the origin to (1, 0) and (0, 1),
which is the boundary of S. Then let O = S/P , i.e., O is the set of points
in S that are not in this boundary triangle. Note that O is open since its
complement in X is just P , which contains its limit points and is therefore
closed.

Now we must verify that it satisfies the two conditions. The first con-
dition seems relatively clear, since the only way for the images to overlap is
on the boundary, which we have removed. The second condition also checks
out, since T (O) does not contain any portion of P and thus must be inside
O.

Exercise 4.44. Determine a set O for the Koch curve to show that it
is just-touching.

Example 4.45. The iterated function system in example 4.25 is over-
lapping.

Theorem 4.46. [Bar12, p. 183] Let (X;T1, ..., Tn) be an iterated func-
tion system, let c1, c2, ..., cn be the similarity ratios of T1, T2, ..., Tn respec-
tively, and let A be the attractor of the IFS. If the IFS is totally disconnected
or just-touching then the box-counting dimension is the similarity dimension
of A. If the IFS is overlapping, then DimB(A) ≤ DimS(A).
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4.6. Exercises

Exercise 4.47. Go back through your introductory calculus notes or book
and give the proof that lim

k→∞
2k sin(π/k) = 2π. You may assume the identity

lim
h→0

sin(h)

h
= 1.

Exercise 4.48. Use the methods of section 4.2 and especially problem 4.11 to
obtain a value s for the dimension of the middle-thirds Cantor set.

Exercise 4.49. Let A ⊂ R be the set given by A = {1/n, such that n =
1, 2, 3, ...}. Find the box-counting dimension of A.

Exercise 4.50. Let A ⊂ R be the set given by A = {1/n2, such that n =
1, 2, 3, ...}. Find the box-counting dimension of A.



CHAPTER 5

Julia Sets

Our primary source for fractals up to this point has been iterated function
systems. We have seen that a collection of contraction maps Ti : X → X, acting
together as a collage, have a unique fixed set A. That set A is a collection of
points in our original space X that have some or all of the properties identified in
section 1.6: a complicated, “fine” structure that is too detailed to be described in
traditional geometric terms; that structure is often a form of self-similarity; and
the dimension is often not an integer.

Like the attractors A we’ve been studying, Julia sets are subsets of X that
behave in a certain way relative to a transformation. The transformations will
no longer be affine,they aren’t contractions, and the behavior we study is a little
different. We can already find interesting examples when we think about polynomial
transformations in the complex plane in section 5.2.

We know from experimentation on iterated function systems that seemingly
minor alterations to the Ti’s can have unpredictable effects on the set A. Similarly,
by changing a single parameter in the transformation we can change its Julia set
dramatically. To pique your interest, figure 1 shows two Julia sets that come from
the transformation f(z) = z2 + λ.

Figure 1. The filled Julia sets for λ = 1 (left) and λ = i (right).
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5.1. Basic example: dynamical systems in R

We recall some of the notation and terminology from chapter 1 and, with
X ⊂ R, consider some transformation f : X → X. We define f2(x) to be f ◦f(x) =
f(f(x)), not (f(x))2, and in general fn(x) is defined to be f ◦f · · · ◦f(x) (n times).
For x ∈ X consider the sequence

O(x) = {x, f(x), f2(x), f3(x), ...}

We’ve called O(x) the orbit of x and we use the notation (X, f) to denote the
dynamical system defined by f acting on X.

Exercise 5.1. Let A = R and let f(x) = x2. Compute the orbits under
f of x = 2, x = −1, and x = 1/2. Make some sort of graphical depiction
of these orbits. Try to give a full qualitativea description of the possible
behavior of points in this system.

a“Qualitative” is used here in contrast to “quantitative”. In a qualitative description you

give a general description of the behavior that depend on qualities of the initial points.
A relevant quality could be something like “falls into this set” or “is at least that big” or

some such.

You almost certainly noticed that there are two fixed points of the system in the
previous example. One of them counts as attracting and the other repelling. The
behavior of orbits near fixed points plays an important role in dynamical systems
theory. Another thing you will have noticed is that some of the orbits stay bounded
and others go off to infinity.

Definition 5.2. Let X ⊂ R,Rd, or C and let f : X → X be a polyno-
mial transformation. The filled Julia set Ff of f is the set of all points in X
whose orbits under f stay bounded. The Julia set Jf of f is the boundarya

of Ff .

aThe boundary of a set A is the set of all points x ∈ X such that B(x, ε) contains points

in A and not in A for all ε > 0. In straightforward examples, the boundary of a set is
what you’d expect it to be.

Note that there are more technical characterizations of Julia sets that hold for
larger classes of functions. A definition for rational functions, which are quotients
of polynomials, is found on [Bar12, p. 278], and a definition of ‘analytic’ functions
(ones with convergent Taylor series) appears in [Fal06, p. 219] and [FN, p. 334].
For the case of polynomial transformations these technical definitions coincide with
ours.

Exercise 5.3. Identify Ff and Jf for exercise 5.1.

In general, it turns out to be relatively easy to conceptualize Ff and to write
computer code to generate images of it. It is more difficult to work with the Julia
set definition, which requires us to have an analysis-level comprehension of the
definition of boundary points footnoted below. For that reason, in this class we will
restrict our attention to filled Julia sets.
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Exercise 5.4. Consider the function f : R→ R given by f(x) = x2−2.

(1) Pick several choices for x and investigate their orbits. Try to find
examples of different behavior.

(2) From your experimental points, determine the filled Julia set Ff .

Of course your answer to part (2) isn’t a proof, and it would require some more
work to make a proof. One way to do it would be to show that if |x| ≥ some number,
then |fn(x)| → ∞. This is where the idea of the “escape region” comes in. You
can think of an escape region as being all points that are at least K in magnitude
and for which |f(x)| is at least as big as M |x|, for some M > 1. Formally,

Definition 5.5. Let X ⊂ R,Rd, or C and let f : X → X. A region of
the form V = {x ∈ X such that |x| > K} is an escape region for f if there
is an M > 1 for which |f(x)| ≥M |x| for all x ∈ V .

Example 5.6. Let’s try and find an escape region using, say, M = 2 for
exercise 5.4. We need to find a K that works for the definition. So we need
to solve |f(x)| ≥ 2|x|. Noticing the symmetry that f(x) = f(−x), we work
with positive values of x and try to solve x2 − 2 ≥ 2x. A little bit of the

quadratic formula later we see that if x ≥ 1 +
√

3, then |f(x)| ≥ 2|x|. So an

escape region for f(x) = x2−2 is the set V = {x ∈ R such that |x| > 1+
√

3}.

You may feel like we worked a little bit backwards in that example, but choosing
K first and trying to find M was a bit difficult algebraically. For our purposes the
precise value of M doesn’t matter as much as figuring out what the K is for some
value of M . Any M > 1 will be good enough for the escape-time algorithm, as we
shall see soon. For now, though, let us notice a handy way to use escape regions to
rule out a point being in Ff .

Exercise 5.7. Let f : X → X and suppose that you have been given
an escape region V along with the M and K from the definition.

(1) Show that if x ∈ V, then f(x) ∈ V also.
(2) Find a lower bound on |fn(x)| for x ∈ V .
(3) Deduce that if x ∈ V then |fn(x)| → ∞ as n→∞.

This exercise showed that if the orbit of a point ever enters an escape region, then
it is destined to wander off to infinity and thus cannot be in the filled Julia set.

Exercise 5.8. Investigate the dynamics and compute the filled Julia
sets for the following examples.

(1) f(x) = x+ 7
(2) f(x) = x/2
(3) f(x) = 2x
(4) f(x) = x2/7
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5.2. Classic example: dynamical systems in C.

5.2.1. Review of complex numbers. The complex plane is visualized in
much the same way as R2, with the point (x, y) ∈ R2 corresponding to z = x+ iy ∈
C. The horizontal axis consists of the purely real numbers z = x+ 0i ∈ R and the
vertical axis consists of the purely imaginary numbers z = 0 + iy. The addition of
complex numbers algebraically is (a+ib)+(c+id) = (a+c)+i(b+d). Geometrically
this follows the usual parallelogram rule for adding vectors (ak, b) and (c, d) in R2.

The operation that sets C apart from R2 is multiplication. It is defined using
the ordinary distributive law

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)

and is therefore quite natural to compute.

Exercise 5.9. Let z1 = 1 + i, z2 = 1 +
√

3i, and z3 = −2i. Compute
zizj for all possible combinations of i and j.

The geometric interpretation of the product of two complex numbers is very
interesting and it is essential that you keep it in mind throughout this chapter.
To understand it, we must think of z as being written in polar coordinates, so z =
a+ib = r(cos θ+i sin θ), where r = |z| and θ is measured in radians counterclockwise
from the positive real axis. In the next exercise you may start to see what happens
geometrically with the products you did in the previous exercise.

Exercise 5.10. For the complex numbers in example 5.9,

(1) Compute ri and θi for i = 1, 2, 3, and
(2) Compute the length and angle of zizj for an assortment of i’s and

j’s of your choosing, looking for a relationship to the lengths and
angles of zi and zj . Graph zi, zj , and zizj on the same set of axes.

The pattern that appears in part (2) is universal and allows us to quickly
visualize the product of two complex numbers. All we have to do to get the product
is multiply the lengths and add the angles. Let’s make that precise.

Exercise 5.11. Show that if z = r(cos θ + i sin θ) and w = s(cosφ +
i sinφ), then

zw = rs(cos(θ + φ) + i sin(θ + φ))

Our work with Julia sets will primarily use polynomial transformations f(z) =
zn + an−1z

n−1 + · · ·+ a1z + a0, where a0, ..., an−1 ∈ C. Having a geometric under-
standing for the terms will be quite helpful to you.

Exercise 5.12. Explain geometrically the relationship between zn and
z for any given complex number z.

Exercise 5.13. Let z = cos(π/6) + i sin(π/6). Make a sketch of zn for
n = 0, 1, 2, 3, ...
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Exercise 5.14. Let z = cos(3)+ i sin(3) (notice that θ = 3 measured in
radians is not a rational multiple of π but it is nonetheless a perfectly good
angle). Sketch z, z2, z3, and think about what happens to zn as n→∞.

5.2.2. The classic example in C. The original transformations Mandelbrot
performed computer calculations on in the 1970’s was f(z) = z2 + λ [FN, Ch. 7],
and we will follow in his footsteps. The question he asked was, for which values of
λ is the Julia set connected? This is a topological question beyond the scope of our
course, but it turns out that the answer can be understood in much more simple
language that we will investigate this more in Chapter 6. For now, let’s experiment
with a few λs.

Exercise 5.15. Let f : C→ C be given by f(z) = z2.

(1) Compute and make a sketch of the orbits of z = 0, z = cos(π/6) +
i sin(π/6), z = cos(3) + i sin(3) , and z = 2i.

(2) What is the filled Julia set for this transformation?
(3) Find an escape region for f , showing your choice of K and M .

Exercise 5.16. For λ = 1,

(1) Compute the first few elements of the orbits of z = 0, z = i, and
z = 1.

(2) Find the fixed points of f , if any. At least those are in the filled
Julia set.

Exercise 5.17. For λ = −1,

(1) Compute the first few elements of the orbits of z = 0, z = i, and
z = 1.

(2) Try and find an element of the filled Julia set that isn’t a fixed
point.

There is a fairly simple way to find an escape region for f(z) = z2 + λ for all
values of λ. Let K = max{|λ|, 2.1}. Let V = {z ∈ C such that |z| > K}. Let us
prove this is an escape region for f .

Proof. We are interested in showing that |z2 + λ| ≥ M |z| for some M > 1,
where z ∈ V . You can use the triangle inequality to prove that |z2 +λ| ≥ |z2|− |λ|.
Since |z| ≥ |λ| this implies that |z2 + λ| ≥ |z2| − |z|. By our discussion of the
multiplication of complex numbers we know that |z2| = |z|2, so |z2+λ| ≥ |z|2−|z| =
|z|(|z| − 1). Now we can use the fact that z ∈ V by noticing that |z| > K implies
that |z|− 1 ≥ 2.1− 1 = 1.1. This means that |f(z)| = |z2 +λ| ≥ 1.1|z| for all z ∈ V
and the definition of an escape region is satisfied. �

Notice that any number of the form 2 + ε with ε > 0 would have worked in
the previous proof. In that case M = 1 + ε. As it turns out, you can actually
use K = max{|λ|, 2} as an escape region without disruption to the escape-time
algorithm even though it doesn’t quite satisfy our definition.
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Exercise 5.18. Prove that |z2 + λ| ≥ |z2| − |λ| using the triangle in-
equality.

5.3. The Escape Time Algorithm

Here is the algorithm that was used to create the images in Figure 1. The basic
idea is that we test values of z by looking at whether fn(z) is in our escape region
V or not. If we let n be large enough and find that fn(z) 6∈ V , we surmise (possibly
incorrectly) that z ∈ Ff . This algorithm will certainly be accurate about finding
points that are not in Ff , since we know that as soon as an orbit enters V it is not
bounded. We will probably see some false positives, though, especially if n is small,
but we are just getting an image and can only be accurate up to the size of a pixel
no matter what.

Let’s refine this idea more, with the goal of arriving at an algorithm we can
put in the computer. The basic way the algorithm works is that it cycles through
a grid of points, applies f a given number numits times to each point in the grid,
and determines whether the result falls into the escape region. If it does, that point
is certainly not in Ff and is given a color representing the number of iterations it
took to get into the escape region. If the point has not entered the escape region
by the time numits iterations has been done, it is considered to be in Ff and is
colored black.

Here are the elements we need in order to run the algorithm to graph Ff for a
given f : C→ C.

• An escape region V , which we compute beforehand using pencil and paper.
• A viewing window of the form [a, b]× [c, d], i.e. x+ iy ∈ C with a ≤ x ≤ b

and c ≤ y ≤ d. The viewing window does not need to include large
portions of the escape region since we already know Ff isn’t in there.

• The number of points from your window you wish to sample. It’s con-
venient to decide on a grid size numgrid and sample z at increments of
(b− a)/numgrid horizontally and (d− c)/numgrid vertically.

• Computer code that takes each z from your grid and assigns it a number
j ∈ {0, 1, ..., numits} that is either the smallest number for which f j(z) ∈
V , or it is simply j = numits if the orbit of z does not reach the escape
region in numits tries.

• A way to have the computer turn this numgrid × numgrid array of js
into colors.

We will see how these elements are coded into Mathematica for the special
case of f(z) = z2 + λ using the (slightly cheating) escape region V = {z ∈
C such that |z| > 2} we computed in the previous section. Note that upping the
sizes of numgrid and numits will slow the computer down, but we can manipulate
them to get trustworthy images.

5.4. Exploring some more, algebraically and Mathematica-ally.

We continue our investigation of the filled Julia sets of f(z) = z2 +λ. We have
seen that when λ = 0, the filled Julia set is just the unit disc and the Julia set
itself is the unit circle. The unit circle has fractal dimension 1. In our experiments
on the computer we have seen that moving λ away from zero produces interesting
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Julia sets that at least appear to have a larger fractal dimension. Are there any
other values of λ for which the Julia set is simple enough to have fractal dimension
equal to one? Where should we expect the Julia sets to lie, and for which λ is the
Julia set “interesting” in some way?

Exercise 5.19. In this problem we start to think about where the filled
Julia set is located in C. Restrict your attention to real values of λ.

(1) The filled Julia set is never completely empty because there is
always at least one element of C whose orbit is bounded. Find a
formula in terms of λ for such a point.

(2) Find a condition on λ that guarantees that the filled Julia set
contains a number that is not in R.

Exercise 5.20. Let λ = −2.

(1) Find an interval of real numbers that lies in the filled Julia set.
(2) For z = a+ib, find a condition on a and b that guarantees that f(z)

lies in the escape region V = {z ∈ C such that |z| > 2}. (Hint:
look at the size of the real part of f(z) and see if the imaginary
part adds enough length to get f(z) into V .)

(3) Using your previous answer, make a sketch of C indicating all val-
ues of z whose orbits are sure to escape to infinity.

(4) In mathematica, enlarge the viewing window to include [−2, 2] ×
[−2, 2], and make the Julia set for as large of numits and numgrid
as you need to satisfy yourself that you are seeing the true Julia
set. Explain where your answer to part (3) fits in the mathematica
image.

Exercise 5.21. Let’s investigate the appearance of the Julia sets for λs
in the interval [.2, .3].

(1) Using a calculator or other technology (I found the calculator to
be fast), compute the first several points in the orbit of 0 for λ =
.2, .25, and .3. Make a conjecture about whether the origin is in
the filled Julia set.

(2) To lend credence to your findings in the previous part it helps to
think about the fixed points of f . For each case, compute them.

(3) Because λ is real, you know that f(z) ∈ R whenever z ∈ R. That
means that you can sketch the graph of y = f(x) to try to un-
derstand the orbit of 0. Make a careful sketch of the graph for
each case, and include on your sketch the line y = x, which should
intersect at the fixed points. Use these graphs to verify or refute
your conjecture that the origin is in Ff .
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Exercise 5.22. Let’s focus in on the region around λ = .25 and let
mathematica compute some images.a

(1) Alter the mathematica code to plot the Julia sets for the the λs in
the previous exercise, going up from λ = .2 in increments of .0125.
What do you notice about how the Julia sets change? Experiment
with numits. At what level of numits does your set of images
seem to stabilize?

(2) Choose a smaller range of λs around .25 and repeat with a smaller
step size. Experiment with numits. At what level of numits does
your set of images seem to stabilize?

(3) Choose a teeny weeny range around .25 and repeat.

aThe presenter(s) for this one will need to send me their images before class so I can get
them onscreen for everyone.



CHAPTER 6

Mandelbrot Sets

For historical and aesthetic reasons, we have focused our attention to a parame-
terized class of transformations f : C→ C given by f(z) = z2 +λ. We will continue
to do that in this section, thinking of λ as our parameter. However, it is interesting
to note that the game that we are playing with the escape-time algorithm, Julia
sets, and various λs, can be played with all sorts of different functions f . You
are encouraged to experiment on the computer with generalizations as simple as
f(z) = z3 + λ or as crazy as f(z) = λ sin(z)− 1.

Mandelbrot’s original question, on which he performed some of the first com-
puter experiments, was the question: “For which values of λ is the Julia set con-
nected?” This changes our way of thinking about Julia sets. The escape-time
algorithm was able to plot the filled Julia set for a specific value of λ. This question
is asking us to consider every λ ∈ C, picture its Julia set, and determine if it is
connected. The result is a subset M ⊂ C of λs that share a common property:
namely, that their Julia sets are connected.

It turns out that there is a way to understand the Mandelbrot set without
needing to perform a topological analysis of the Julia set for each value of λ. What
we are giving here as a definition is given elsewhere as a theorem, sometimes known
as the “fundamental theorem of the Mandelbrot set” [Fal06, p. 225].

Definition 6.1. The Mandelbrot set is the set of all λ ∈ C such that 0
is in the filled Julia set of f(z) = z2 + λ. That is,

M = {λ ∈ C such that the orbit of 0 under f(z) = z2 + λ is bounded}

In order to begin understanding this definition you can try some values of
λ to determine whether or not they are in M as in the next exercise. Use a
calculator, earlier problems, and/or what you know about escape regions to make
the computations simpler.

Exercise 6.2. Determine whether λ ∈M for λ = 0, 1, i,−2, 1 + i, and
.25.

This next example provides a general sense of where the Mandelbrot set lies in
the complex plane.
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Exercise 6.3. Prove that if |λ| > 2, then O(0) is unbounded by filling
in the blanks on this proof.

Proof. Let λ ∈ C with |λ| > 2. We know from the proof and discussion
on page that an escape region for f(z) = z2 + λ takes the form
V = , where K = . So
we need only show that there is some n for which |fn(0)| > .

We compute f(0) = and f2(0) = , and so |f2(0)| =
, which simplifies to . We can apply the tri-

angle inequality result of exercise to see that therefore |f2(0)| ≥
. Since |λ| > 2, this means that > and

therefore |f2(0)| > , proving that it is in the escape region and there-
fore the orbit of 0 is unbounded. �

Let us consider a sample of λs of the form a+ bi, where a ranges from −.5 to
.5 and b ranges from 0 to 1. Figure 1 shows the filled Julia sets for λs in this range,
sampled at increments of .25 in both a and b.

Figure 1 gives us a sense of which values of λ may fall into M. The origin, at
center bottom, is definitely in. Looking from there to the right, we see (and have
already proved) that .25 is in M and any real λ > .25 is not. We have shown that
λ = i is not inM; its Julia set appears in the center top and looks like it might be
connected, but our calculations in exercise 6.2 have proved it is not.

6.1. Using the escape-time algorithm to plot the Mandelbrot set.

We know from exercise 6.3 any λ in the Mandelbrot set lies in the circle of
radius 2 around the origin. Figure 2 shows a Mathematica-generated depiction of
the Mandelbrot set generated using an adaptation of the escape-time algorithm.
The viewing area is [−2.1, 2.1] × [−2.1, 2.1], the Mandelbrot set is colored black,
and the coloring of the exterior represents the number of iterations before the origin
enters the escape region.

Many of the elements of the escape-time algorithm for plotting Julia sets are
reused to plot the Mandelbrot set. Here are the ingredients:

• We can use the escape region V = {z ∈ C such that |z| > 2} since the
only λ under consideration satisfy |λ| ≤ 2.

• A viewing window of the form [a, b]× [c, d], i.e. x+ iy ∈ C with a ≤ x ≤ b
and c ≤ y ≤ d. This time the viewing window is for values of λ.

• We use numits and numgrid the same way as before, sampling our λs in
a numgrid by numgrid array. The key difference now is that for each λ,
we only need to test whether the orbit of 0 enters the escape region within
numits iterations.

• A way to have the computer turn this numgrid × numgrid array of js
into colors.

So our Mandelbrot escape-time algorithm is going to cycle through a grid of λs
of our choosing. For each λ, we compute the first numits elements of the orbit of 0
and record when, if ever, the origin enters the escape region. If it hasn’t by numits
iterations, we proclaim λ to be in the Mandelbrot set. If not, we assign a color
to λ in terms of how long the origin took to enter the escape region. As before,
we will have no false negatives but may see false positives. Upping numits helps
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Figure 1. Filled Julia sets with λ = −.5 in the lower left and
λ = .5 + i in the upper right.

to eliminate the false positives and upping numgrid improves the resolution of the
plot. We will experiment further with our Mathematica code using this algorithm.
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Figure 2. A rendering of the Mandelbrot set.
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