
CHAPTER 6

Mandelbrot Sets

For historical and aesthetic reasons, we have focused our attention to a parame-
terized class of transformations f : C ! C given by f(z) = z

2+�. We will continue
to do that in this section, thinking of � as our parameter. However, it is interesting
to note that the game that we are playing with the escape-time algorithm, Julia
sets, and various �s, can be played with all sorts of di↵erent functions f . You
are encouraged to experiment on the computer with generalizations as simple as
f(z) = z

3 + � or as crazy as f(z) = � sin(z)� 1.
Mandelbrot’s original question, on which he performed some of the first com-

puter experiments, was the question: “For which values of � is the Julia set con-
nected?” This changes our way of thinking about Julia sets. The escape-time
algorithm was able to plot the filled Julia set for a specific value of �. This question
is asking us to consider every � 2 C, picture its Julia set, and determine if it is
connected. The result is a subset M ⇢ C of �s that share a common property:
namely, that their Julia sets are connected.

It turns out that there is a way to understand the Mandelbrot set without
needing to perform a topological analysis of the Julia set for each value of �. What
we are giving here as a definition is given elsewhere as a theorem, sometimes known
as the “fundamental theorem of the Mandelbrot set” [Fal06, p. 225].

Definition 6.1. The Mandelbrot set is the set of all � 2 C such that 0
is in the filled Julia set of f(z) = z

2 + �. That is,

M = {� 2 C such that the orbit of 0 under f(z) = z
2 + � is bounded}

In order to begin understanding this definition you can try some values of
� to determine whether or not they are in M as in the next exercise. Use a
calculator, earlier problems, and/or what you know about escape regions to make
the computations simpler.

Exercise 6.2. Determine whether � 2 M for � = 0, 1, i,�2, 1 + i, and
.25.

This next example provides a general sense of where the Mandelbrot set lies in
the complex plane.
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66 6. MANDELBROT SETS

Exercise 6.3. Prove that if |�| > 2, then O(0) is unbounded by filling
in the blanks on this proof.

Proof. Let � 2 C with |�| > 2. We know from the proof and discussion
on page that an escape region for f(z) = z

2 + � takes the form
V = , where K = . So
we need only show that there is some n for which |fn(0)| > .

We compute f(0) = and f
2(0) = , and so |f2(0)| =

, which simplifies to . We can apply the tri-
angle inequality result of exercise to see that therefore |f2(0)| �

. Since |�| > 2, this means that > and
therefore |f2(0)| > , proving that it is in the escape region and there-
fore the orbit of 0 is unbounded. ⇤

Let us consider a sample of �s of the form a+ bi, where a ranges from �.5 to
.5 and b ranges from 0 to 1. Figure 1 shows the filled Julia sets for �s in this range,
sampled at increments of .25 in both a and b.

Figure 1 gives us a sense of which values of � may fall into M. The origin, at
center bottom, is definitely in. Looking from there to the right, we see (and have
already proved) that .25 is in M and any real � > .25 is not. We have shown that
� = i is not in M; its Julia set appears in the center top and looks like it might be
connected, but our calculations in exercise 6.2 have proved it is not.

6.1. Using the escape-time algorithm to plot the Mandelbrot set.

We know from exercise 6.3 any � in the Mandelbrot set lies in the circle of
radius 2 around the origin. Figure 2 shows a Mathematica-generated depiction of
the Mandelbrot set generated using an adaptation of the escape-time algorithm.
The viewing area is [�2.1, 2.1] ⇥ [�2.1, 2.1], the Mandelbrot set is colored black,
and the coloring of the exterior represents the number of iterations before the origin
enters the escape region.

Many of the elements of the escape-time algorithm for plotting Julia sets are
reused to plot the Mandelbrot set. Here are the ingredients:

• We can use the escape region V = {z 2 C such that |z| > 2} since the
only � under consideration satisfy |�|  2.

• A viewing window of the form [a, b]⇥ [c, d], i.e. x+ iy 2 C with a  x  b

and c  y  d. This time the viewing window is for values of �.
• We use numits and numgrid the same way as before, sampling our �s in
a numgrid by numgrid array. The key di↵erence now is that for each �,
we only need to test whether the orbit of 0 enters the escape region within
numits iterations.

• A way to have the computer turn this numgrid ⇥ numgrid array of js
into colors.

So our Mandelbrot escape-time algorithm is going to cycle through a grid of �s
of our choosing. For each �, we compute the first numits elements of the orbit of 0
and record when, if ever, the origin enters the escape region. If it hasn’t by numits

iterations, we proclaim � to be in the Mandelbrot set. If not, we assign a color
to � in terms of how long the origin took to enter the escape region. As before,
we will have no false negatives but may see false positives. Upping numits helps
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Figure 1. Filled Julia sets with � = �.5 in the lower left and
� = .5 + i in the upper right.

to eliminate the false positives and upping numgrid improves the resolution of the
plot. We will experiment further with our Mathematica code using this algorithm.
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Figure 2. A rendering of the Mandelbrot set.
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