
CHAPTER 5

Julia Sets

Our primary source for fractals up to this point has been iterated function
systems. We have seen that a collection of contraction maps Ti : X ! X, acting
together as a collage, have a unique fixed set A. That set A is a collection of
points in our original space X that have some or all of the properties identified in
section 1.6: a complicated, “fine” structure that is too detailed to be described in
traditional geometric terms; that structure is often a form of self-similarity; and
the dimension is often not an integer.

Like the attractors A we’ve been studying, Julia sets are subsets of X that
behave in a certain way relative to a transformation. The transformations will
no longer be a�ne,they aren’t contractions, and the behavior we study is a little
di↵erent. We can already find interesting examples when we think about polynomial
transformations in the complex plane in section 5.2.

We know from experimentation on iterated function systems that seemingly
minor alterations to the Ti’s can have unpredictable e↵ects on the set A. Similarly,
by changing a single parameter in the transformation we can change its Julia set
dramatically. To pique your interest, figure 1 shows two Julia sets that come from
the transformation f(z) = z

2 + �.

Figure 1. The filled Julia sets for � = 1 (left) and � = i (right).

57

58 5. JULIA SETS

5.1. Basic example: dynamical systems in R

We recall some of the notation and terminology from chapter 1 and, with
X ⇢ R, consider some transformation f : X ! X. We define f2(x) to be f �f(x) =
f(f(x)), not (f(x))2, and in general fn(x) is defined to be f �f · · ·�f(x) (n times).
For x 2 X consider the sequence

O(x) = {x, f(x), f2(x), f3(x), ...}

We’ve called O(x) the orbit of x and we use the notation (X, f) to denote the
dynamical system defined by f acting on X.

Exercise 5.1. Let A = R and let f(x) = x
2. Compute the orbits under

f of x = 2, x = �1, and x = 1/2. Make some sort of graphical depiction
of these orbits. Try to give a full qualitativea description of the possible
behavior of points in this system.

a“Qualitative” is used here in contrast to “quantitative”. In a qualitative description you
give a general description of the behavior that depend on qualities of the initial points.
A relevant quality could be something like “falls into this set” or “is at least that big” or
some such.

You almost certainly noticed that there are two fixed points of the system in the
previous example. One of them counts as attracting and the other repelling. The
behavior of orbits near fixed points plays an important role in dynamical systems
theory. Another thing you will have noticed is that some of the orbits stay bounded
and others go o↵ to infinity.

Definition 5.2. Let X ⇢ R,Rd
, or C and let f : X ! X be a polyno-

mial transformation. The filled Julia set Ff of f is the set of all points in X

whose orbits under f stay bounded. The Julia set Jf of f is the boundarya

of Ff .

aThe boundary of a set A is the set of all points x 2 X such that B(x, ✏) contains points
in A and not in A for all ✏ > 0. In straightforward examples, the boundary of a set is
what you’d expect it to be.

Note that there are more technical characterizations of Julia sets that hold for
larger classes of functions. A definition for rational functions, which are quotients
of polynomials, is found on [Bar12, p. 278], and a definition of ‘analytic’ functions
(ones with convergent Taylor series) appears in [Fal06, p. 219] and [FN, p. 334].
For the case of polynomial transformations these technical definitions coincide with
ours.

Exercise 5.3. Identify Ff and Jf for exercise 5.1.

In general, it turns out to be relatively easy to conceptualize Ff and to write
computer code to generate images of it. It is more di�cult to work with the Julia
set definition, which requires us to have an analysis-level comprehension of the
definition of boundary points footnoted below. For that reason, in this class we will
restrict our attention to filled Julia sets.

5.1. BASIC EXAMPLE: DYNAMICAL SYSTEMS IN R 59

Exercise 5.4. Consider the function f : R ! R given by f(x) = x
2�2.

(1) Pick several choices for x and investigate their orbits. Try to find
examples of di↵erent behavior.

(2) From your experimental points, determine the filled Julia set Ff .

Of course your answer to part (2) isn’t a proof, and it would require some more
work to make a proof. One way to do it would be to show that if |x| � some number,
then |fn(x)| ! 1. This is where the idea of the “escape region” comes in. You
can think of an escape region as being all points that are at least K in magnitude
and for which |f(x)| is at least as big as M |x|, for some M > 1. Formally,

Definition 5.5. Let X ⇢ R,Rd
, or C and let f : X ! X. A region of

the form V = {x 2 X such that |x| > K} is an escape region for f if there
is an M > 1 for which |f(x)| � M |x| for all x 2 V .

Example 5.6. Let’s try and find an escape region using, say, M = 2 for
exercise 5.4. We need to find a K that works for the definition. So we need
to solve |f(x)| � 2|x|. Noticing the symmetry that f(x) = f(�x), we work
with positive values of x and try to solve x

2 � 2 � 2x. A little bit of the
quadratic formula later we see that if x � 1+

p
3, then |f(x)| � 2|x|. So an

escape region for f(x) = x
2�2 is the set V = {x 2 R such that |x| > 1+

p
3}.

You may feel like we worked a little bit backwards in that example, but choosing
K first and trying to find M was a bit di�cult algebraically. For our purposes the
precise value of M doesn’t matter as much as figuring out what the K is for some

value of M . Any M > 1 will be good enough for the escape-time algorithm, as we
shall see soon. For now, though, let us notice a handy way to use escape regions to
rule out a point being in Ff .

Exercise 5.7. Let f : X ! X and suppose that you have been given
an escape region V along with the M and K from the definition.

(1) Show that if x 2 V, then f(x) 2 V also.
(2) Find a lower bound on |fn(x)| for x 2 V .
(3) Deduce that if x 2 V then |fn(x)| ! 1 as n ! 1.

This exercise showed that if the orbit of a point ever enters an escape region, then
it is destined to wander o↵ to infinity and thus cannot be in the filled Julia set.

Exercise 5.8. Investigate the dynamics and compute the filled Julia
sets for the following examples.

(1) f(x) = x+ 7
(2) f(x) = x/2
(3) f(x) = 2x
(4) f(x) = x

2
/7

60 5. JULIA SETS

5.2. Classic example: dynamical systems in C.

5.2.1. Review of complex numbers. The complex plane is visualized in
much the same way as R2, with the point (x, y) 2 R2 corresponding to z = x+ iy 2
C. The horizontal axis consists of the purely real numbers z = x+ 0i 2 R and the
vertical axis consists of the purely imaginary numbers z = 0 + iy. The addition of
complex numbers algebraically is (a+ib)+(c+id) = (a+c)+i(b+d). Geometrically
this follows the usual parallelogram rule for adding vectors (ak, b) and (c, d) in R2.

The operation that sets C apart from R2 is multiplication. It is defined using
the ordinary distributive law

(a+ ib)(c+ id) = (ac� bd) + i(ad+ bc)

and is therefore quite natural to compute.

Exercise 5.9. Let z1 = 1 + i, z2 = 1 +
p
3i, and z3 = �2i. Compute

zizj for all possible combinations of i and j.

The geometric interpretation of the product of two complex numbers is very
interesting and it is essential that you keep it in mind throughout this chapter.
To understand it, we must think of z as being written in polar coordinates, so z =
a+ib = r(cos ✓+i sin ✓), where r = |z| and ✓ is measured in radians counterclockwise
from the positive real axis. In the next exercise you may start to see what happens
geometrically with the products you did in the previous exercise.

Exercise 5.10. For the complex numbers in example 5.9,

(1) Compute ri and ✓i for i = 1, 2, 3, and
(2) Compute the length and angle of zizj for an assortment of i’s and

j’s of your choosing, looking for a relationship to the lengths and
angles of zi and zj . Graph zi, zj , and zizj on the same set of axes.

The pattern that appears in part (2) is universal and allows us to quickly
visualize the product of two complex numbers. All we have to do to get the product
is multiply the lengths and add the angles. Let’s make that precise.

Exercise 5.11. Show that if z = r(cos ✓ + i sin ✓) and w = s(cos� +
i sin�), then

zw = rs(cos(✓ + �) + i sin(✓ + �))

Our work with Julia sets will primarily use polynomial transformations f(z) =
z
n + an�1z

n�1 + · · ·+ a1z+ a0, where a0, ..., an�1 2 C. Having a geometric under-
standing for the terms will be quite helpful to you.

Exercise 5.12. Explain geometrically the relationship between z
n and

z for any given complex number z.

Exercise 5.13. Let z = cos(⇡/6) + i sin(⇡/6). Make a sketch of zn for
n = 0, 1, 2, 3, ...

5.2. CLASSIC EXAMPLE: DYNAMICAL SYSTEMS IN C. 61

Exercise 5.14. Let z = cos(3)+ i sin(3) (notice that ✓ = 3 measured in
radians is not a rational multiple of ⇡ but it is nonetheless a perfectly good
angle). Sketch z, z

2
, z

3
, and think about what happens to z

n as n ! 1.

5.2.2. The classic example in C. The original transformations Mandelbrot
performed computer calculations on in the 1970’s was f(z) = z

2 + � [FN, Ch. 7],
and we will follow in his footsteps. The question he asked was, for which values of
� is the Julia set connected? This is a topological question beyond the scope of our
course, but it turns out that the answer can be understood in much more simple
language that we will investigate this more in Chapter 6. For now, let’s experiment
with a few �s.

Exercise 5.15. Let f : C ! C be given by f(z) = z
2.

(1) Compute and make a sketch of the orbits of z = 0, z = cos(⇡/6) +
i sin(⇡/6), z = cos(3) + i sin(3) , and z = 2i.

(2) What is the filled Julia set for this transformation?
(3) Find an escape region for f , showing your choice of K and M .

Exercise 5.16. For � = 1,

(1) Compute the first few elements of the orbits of z = 0, z = i, and
z = 1.

(2) Find the fixed points of f , if any. At least those are in the filled
Julia set.

Exercise 5.17. For � = �1,

(1) Compute the first few elements of the orbits of z = 0, z = i, and
z = 1.

(2) Try and find an element of the filled Julia set that isn’t a fixed
point.

There is a fairly simple way to find an escape region for f(z) = z
2 + � for all

values of �. Let K = max{|�|, 2.1}. Let V = {z 2 C such that |z| > K}. Let us
prove this is an escape region for f .

Proof. We are interested in showing that |z2 + �| � M |z| for some M > 1,
where z 2 V . You can use the triangle inequality to prove that |z2+�| � |z2|� |�|.
Since |z| � |�| this implies that |z2 + �| � |z2| � |z|. By our discussion of the
multiplication of complex numbers we know that |z2| = |z|2, so |z2+�| � |z|2�|z| =
|z|(|z| � 1). Now we can use the fact that z 2 V by noticing that |z| > K implies
that |z|� 1 � 2.1� 1 = 1.1. This means that |f(z)| = |z2+�| � 1.1|z| for all z 2 V

and the definition of an escape region is satisfied. ⇤
Notice that any number of the form 2 + ✏ with ✏ > 0 would have worked in

the previous proof. In that case M = 1 + ✏. As it turns out, you can actually
use K = max{|�|, 2} as an escape region without disruption to the escape-time
algorithm even though it doesn’t quite satisfy our definition.

62 5. JULIA SETS

Exercise 5.18. Prove that |z2 + �| � |z2| � |�| using the triangle in-
equality.

5.3. The Escape Time Algorithm

Here is the algorithm that was used to create the images in Figure 1. The basic
idea is that we test values of z by looking at whether fn(z) is in our escape region
V or not. If we let n be large enough and find that fn(z) 62 V , we surmise (possibly
incorrectly) that z 2 Ff . This algorithm will certainly be accurate about finding
points that are not in Ff , since we know that as soon as an orbit enters V it is not
bounded. We will probably see some false positives, though, especially if n is small,
but we are just getting an image and can only be accurate up to the size of a pixel
no matter what.

Let’s refine this idea more, with the goal of arriving at an algorithm we can
put in the computer. The basic way the algorithm works is that it cycles through
a grid of points, applies f a given number numits times to each point in the grid,
and determines whether the result falls into the escape region. If it does, that point
is certainly not in Ff and is given a color representing the number of iterations it
took to get into the escape region. If the point has not entered the escape region
by the time numits iterations has been done, it is considered to be in Ff and is
colored black.

Here are the elements we need in order to run the algorithm to graph Ff for a
given f : C ! C.

• An escape region V , which we compute beforehand using pencil and paper.
• A viewing window of the form [a, b]⇥ [c, d], i.e. x+ iy 2 C with a x b

and c y d. The viewing window does not need to include large
portions of the escape region since we already know Ff isn’t in there.

• The number of points from your window you wish to sample. It’s con-
venient to decide on a grid size numgrid and sample z at increments of
(b� a)/numgrid horizontally and (d� c)/numgrid vertically.

• Computer code that takes each z from your grid and assigns it a number
j 2 {0, 1, ..., numits} that is either the smallest number for which f

j(z) 2
V , or it is simply j = numits if the orbit of z does not reach the escape
region in numits tries.

• A way to have the computer turn this numgrid ⇥ numgrid array of js
into colors.

We will see how these elements are coded into Mathematica for the special
case of f(z) = z

2 + � using the (slightly cheating) escape region V = {z 2
C such that |z| > 2} we computed in the previous section. Note that upping the
sizes of numgrid and numits will slow the computer down, but we can manipulate
them to get trustworthy images.

5.4. Exploring some more, algebraically and Mathematica-ally.

We continue our investigation of the filled Julia sets of f(z) = z
2 +�. We have

seen that when � = 0, the filled Julia set is just the unit disc and the Julia set
itself is the unit circle. The unit circle has fractal dimension 1. In our experiments
on the computer we have seen that moving � away from zero produces interesting

5.4. EXPLORING SOME MORE, ALGEBRAICALLY AND MATHEMATICA-ALLY. 63

Julia sets that at least appear to have a larger fractal dimension. Are there any
other values of � for which the Julia set is simple enough to have fractal dimension
equal to one? Where should we expect the Julia sets to lie, and for which � is the
Julia set “interesting” in some way?

Exercise 5.19. In this problem we start to think about where the filled
Julia set is located in C. Restrict your attention to real values of �.

(1) The filled Julia set is never completely empty because there is
always at least one element of C whose orbit is bounded. Find a
formula in terms of � for such a point.

(2) Find a condition on � that guarantees that the filled Julia set
contains a number that is not in R.

Exercise 5.20. Let � = �2.

(1) Find an interval of real numbers that lies in the filled Julia set.
(2) For z = a+ib, find a condition on a and b that guarantees that f(z)

lies in the escape region V = {z 2 C such that |z| > 2}. (Hint:
look at the size of the real part of f(z) and see if the imaginary
part adds enough length to get f(z) into V .)

(3) Using your previous answer, make a sketch of C indicating all val-
ues of z whose orbits are sure to escape to infinity.

(4) In mathematica, enlarge the viewing window to include [�2, 2] ⇥
[�2, 2], and make the Julia set for as large of numits and numgrid

as you need to satisfy yourself that you are seeing the true Julia
set. Explain where your answer to part (3) fits in the mathematica
image.

Exercise 5.21. Let’s investigate the appearance of the Julia sets for �s
in the interval [.2, .3].

(1) Using a calculator or other technology (I found the calculator to
be fast), compute the first several points in the orbit of 0 for � =
.2, .25, and .3. Make a conjecture about whether the origin is in
the filled Julia set.

(2) To lend credence to your findings in the previous part it helps to
think about the fixed points of f . For each case, compute them.

(3) Because � is real, you know that f(z) 2 R whenever z 2 R. That
means that you can sketch the graph of y = f(x) to try to un-
derstand the orbit of 0. Make a careful sketch of the graph for
each case, and include on your sketch the line y = x, which should
intersect at the fixed points. Use these graphs to verify or refute
your conjecture that the origin is in Ff .

64 5. JULIA SETS

Exercise 5.22. Let’s focus in on the region around � = .25 and let
mathematica compute some images.a

(1) Alter the mathematica code to plot the Julia sets for the the �s in
the previous exercise, going up from � = .2 in increments of .0125.
What do you notice about how the Julia sets change? Experiment
with numits. At what level of numits does your set of images
seem to stabilize?

(2) Choose a smaller range of �s around .25 and repeat with a smaller
step size. Experiment with numits. At what level of numits does
your set of images seem to stabilize?

(3) Choose a teeny weeny range around .25 and repeat.

aThe presenter(s) for this one will need to send me their images before class so I can get
them onscreen for everyone.

	Chapter 1. Introduction
	1.1. Classic examples
	1.2. A geometric approach to transformations.
	1.3. Collage maps: the building blocks of iterated function systems.
	1.4. Affine transformations in two dimensions: a geometric approach
	1.5. Collage maps in two dimensions
	1.6. What is a fractal?
	1.7. Exercises

	Chapter 2. Hausdorff metric and the space of fractals
	2.1. A tiny bit of point-set topology
	2.2. H(X), the space of fractals.
	2.3. Metric spaces
	2.4. Hausdorff metric on H(X)
	2.5. Exercises

	Chapter 3. Iterated Function Systems
	3.1. Collage maps as contractions on the space of fractals
	3.2. Existence of Attractors for Iterated Function Systems
	3.3. Two computer algorithms for IFS fractals
	3.4. The Collage Theorem
	3.5. Exercises

	Chapter 4. Dimensions
	4.1. Motivating examples, or, Fun with length and area.
	4.2. The idea of fractal dimension
	4.3. Similarity dimension
	4.4. Box-counting dimension
	4.5. When the dimensions are equivalent
	4.6. Exercises

	Chapter 5. Julia Sets
	5.1. Basic example: dynamical systems in R
	5.2. Classic example: dynamical systems in C.
	5.3. The Escape Time Algorithm
	5.4. Exploring some more, algebraically and Mathematica-ally.

	Chapter 6. Mandelbrot Sets
	6.1. Using the escape-time algorithm to plot the Mandelbrot set.

	Bibliography

