
CHAPTER 3

Iterated Function Systems

Throughout this chapter, X will denote a compact subset of Rn or C and H(X)
will be its space of fractals, endowed with the Hausdor↵ metric. The reason for
this stipulation is so that the space of fractals H(X) is itself a compact set under
the Hausdor↵ metric, which is a fact that we present without proof. The most
important thing this implies for our purposes is the following.

Lemma 3.1. If {An} is a sequence in H(X) such that lim
n!1

An = A,

then A 2 H(X). In particular, a convergent sequence of nonempty compact

subsets of X converges to a nonempty compact subset of X.

3.1. Collage maps as contractions on the space of fractals

For concreteness let us write down the definition of a contraction mapping
in the setting of the space of fractals. In this definition consider T to be any
transformation on H(X), most often but not always a collage map.

Definition 3.2. We say T : H(X) ! H(X) is a contraction mapping

if there is a c 2 [0, 1) such that for all A,B 2 H(X),

dH(T (A), T (B))  c dH(A,B)

An elementary contraction mapping on H(X) is one obtained by a contraction
on X. To be precise, let T : X ! X be a contraction mapping with contraction
factor c 2 [0, 1). Then by definition 1.10, T defines a transformation on H(X) and
we will soon prove that it is a contraction on H(X) with contraction factor c.

First we should note that whether or not T : X ! X is a contraction, as long
as it is continuous it extends to a transformation on H(X). To see this, consider
T (A) for some element A 2 H(X). It is nonempty since A is. The fact that it is
compact is a real analysis fact: we all learn the mantra “The continuous image of
a compact set is compact”. If T is a contraction on X, then it is automatically
continuous and thus extends to a transformation of the space of fractals.
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30 3. ITERATED FUNCTION SYSTEMS

Example 3.3. Let X = [0, 1], A = [1/4, 1/2] and B = [1/2, 1]. Sup-
pose that T : X ! X is given by T (x) = x/3 + 2/3. We will prove that
dH(T (A), T (B))  1/3 dH(A,B).

First let us compute dH(A,B). With this handy figure:

we can see that the furthest point in A from B is 1/4, while the furthest point
in B from A is 1, making the largest distance 1/2 and so dH(A,B) = 1/2.
Next, we can compute T (A) = [3/4, 5/6] and T (B) = [5/6, 1]. This next

handy figure:
lets us compute dH(T (A), T (B) by noticing that the furthest point in T (A)
from T (B) is 3/4 while the furthest point in T (B) from T (A) is 1, mak-
ing the largest distance 1/6. Thus we see that dH(T (A), T (B)) = 1/6 =
1/3 dH(A,B).

Based on this evidence it would seem that the contracting factor for H(X)
seems like it is going to equal the contracting factor on X itself, and that turns out
to be true. The previous example is a special case of what happens for a general
contraction on X.

Lemma 3.4. Suppose T is a contraction on X with contraction factor c 2
[0, 1). Then the transformation induced by T on H(X) is also a contraction

mapping with contraction factor c.

Exercise 3.5. The proof of Lemma 3.4 uses the following outline. Once
you have figured out how all the steps work, write them into a formal proof.

(1) Consider any A,B 2 H(X) and suppose dH(A,B) = �. Explain
why for every a 2 A there is a b 2 B for which d(a, b)  �.

(2) Compute an upper bound on the Euclidean distance between T (a)
and T (b).

(3) Come up with an argument for why the previous step gives you
a bound on the size of the ✏-thickening of T (B) required so that
T (A) ✓ T (B)✏. (Spoiler alert: that ✏ should be c�.)

(4) Make the symmetric argument that computes an epsilon for which
T (B) ✓ T (A)✏.

(5) Put the previous steps together to show that dH(T (A), T (B)) 
c� = c dH(A,B).
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Of course when we are making fractals what we really care about is collages
made from contractions. We would like to obtain a lemma similar to the previ-
ous lemma that tells us that such a collage is also a contraction, and what the
contraction factor is. The following lemmas will help us get started.

Lemma 3.6. Let A,B,C, and D be elements of H(X). Then dH(A [
B,C [D)  max{dH(A,C), dH(B,D)}.

Proof. Let dH(A,C) = � and dH(B,D) = �, and let ⌫ = max{�, �}. By
definition of dH(A,C) we know that A ✓ C� ✓ C⌫ ; we also know that C⌫ ✓ C⌫[D⌫ .
By Exercise 3.22 we know that C⌫ [ D⌫ = (C [ D)⌫ , and thus we have that
A ✓ (C [ D)⌫ . Similarly, we see that B ✓ D� ✓ D⌫ ✓ C⌫ [ D⌫ = (C [ D)⌫ .
Putting these facts together we have that A [B ✓ (C [D)⌫ .

In the opposite direction we know that C ✓ A� ✓ A⌫ ✓ (A [ B)⌫ , and that
D ✓ B� ✓ B⌫ ✓ (A [ B)⌫ . This shows us that ⌫ � dH(A [ B,C [ D) by the
definition of Hausdor↵ metric using ✏-thickening. ⇤

This result extends to any finite unions of elements of H(X) as the next corol-
lary shows. It can be proved by induction on the number of elements in the union.

Corollary 3.7. Let Ai, Bi 2 H(X) for i = 1, 2, ..., n and let ⌫ =
max
1in

{dH(Ai, Bi)}. Then

dH

 
n[

i=1

Ai ,

n[

i=1

Bi

!
 ⌫.
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Exercise 3.8. Let T1 : X ! X be a contraction with contraction factor

c1 and let T2 : X ! X be a contraction with contraction factor c2. In this

exercise, fill in the blanks to complete a formal proof that the collage map

T = T1 [ T2 is a contraction on H(X).

Proof. Let A,B 2 H(X). Then T (A) = and T (B) =

by . For i = 1, 2

we know that dH(Ti(A), Ti(B))  by Lemma .

Applying Lemma we know that

dH(T (A), T (B))  max{ }

 max{ }

This means that dH(T (A), T (B))  c dH(A,B), where c is defined to be

. Since c 2 [0, 1) we have completed the proof that T is

a contraction mapping on H(X). ⇤

Exercise 3.9. Consider the transformations in Exercise 1.16, Exercise
1.17, Exercise 1.30, and Exercise 1.37. Using analysis similar to the proof in
Exercise 3.8, determine the contraction factor for each collage map. Write
the proof that your collage is a contraction following the form in Exercise
3.8; there are small details that will need to change (for instance, “Lemma”
might become “Corollary” in a key place, depending on your number of
maps).

Your work in the previous two exercises would replicate nearly exactly to prove
the general case, stated next. Note that while in most of our examples the con-
traction maps have been a�ne, that is not needed. All that is required is that the
transformations be contractions.

Theorem 3.10. Let Ti : H(X) ! H(X) be a contraction mapping with

contraction factor ci 2 [0, 1) for all i = 1, 2, ..., n. Then the collage map

T =
n[

i=1

Ti is also a contraction mapping on H(X), with contraction factor

c = max{ci such that i = 1, 2, ..., n}.



3.2. EXISTENCE OF ATTRACTORS FOR ITERATED FUNCTION SYSTEMS 33

Definition 3.11. Let (X, d) be a compact metric space. A (hyper-

bolic) iterated function system (IFS) is given by {X;T1, T2, ..., TK}, where
each Tj is a contraction from X to itself with contractivity factor cj . The
contractivity factor of the IFS is given by c = max{c1, c2, ..., cK}.

3.2. Existence of Attractors for Iterated Function Systems

We are ready to prove the existence theorem for fractals generated by contrac-
tion maps on H(X), which includes those given by collages of contractions (i.e.,
iterated function systems). To prove the theorem we will rely on a lemma from real
analysis that we state without proof. It says that if {Bi}1i=1 is a nested sequence
of nonempty compact subsets of X, then the limit of the sequence is a nonempty
compact subset of X also.

Lemma 3.12. Let B1, B2, ... be a sequence of elements of H(X) such

that Bi ✓ Bi�1 for all i = 1, 2, .... Then lim
i!1

Bi is an element of H(X).

Since B1 ◆ B2 ◆ B3... it is clear that the sets in the sequence are getting
smaller; the key fact to note is that this lemma says that they cannot disappear
entirely (although they certainly could converge to a set containing only a point!).

Exercise 3.13. Let X = [�10, 10]. Make up an example of a nested
sequence of elements of H(X), and find its limit.

And now for the big theorem. It is a special case of the contraction mapping

theorem, which in a broad range of cases proves that a contraction map has a unique
fixed point to which the orbit of every point is attracted.

Theorem 3.14 (Existence theorem for fractals). Let X be a compact

subset of Rn
or C and let H(X) be its space of fractals endowed with the

Hausdor↵ metric. Let T : H(X) ! H(X) be the collage of contractions

T1, T2, ..., TK on X. Then

(1) There exists a unique A 2 H(X) for which T (A) = A, and

(2) For any B 2 H(X),

(3.1) lim
n!1

T n(B) = A

Before we launch into the proof, notice a few things. First, that part (1)
promises us that a fixed point A exists, and that it is unique. The notation A

is used because it is the “attractor” in the sense of (2): that the orbit of every
B 2 H(X) converges to it.

Proof. Consider the sequence of elements of H(X) given by {T n(X)}1
n=1. It

is a nested sequence since T (X) ✓ X, and hence T 2(X) ✓ T (X), implying that
T 3(X) ✓ T 2(X), and so on. By Lemma 3.12 we know that lim

n!1

T n(X) is an

element of H(X) which we will call A. We must show that A is a fixed point of T ,
that it is unique, and that all orbits are attracted to it.
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Since T is a contraction mapping, it is a continuous function and so

T (A) = T ( lim
n!1

T n(X)) = lim
n!1

T (T n(X)) = lim
n!1

T n+1(X) = A,

and thus A is a fixed point of T . The proof that A is unique is the next exercise.
This will prove A is the only fixed point of T and thus completes the proof of part
(1).

Exercise 3.15. Consider a set C 2 H(X) for which T (C) = C and
let c 2 [0, 1) represent a contraction factor for T , which exists by Theorem

. Then dH(T (A), T (C))  . But A and C

are both by T and so that inequality becomes
 c dH(A,C). This is only possible if dH(A,C) = . Since dH is a

on H(X), we know that this is only possible if ,
proving that A is the unique fixed point.

The proof of equation (3.1) is the next exercise.

Exercise 3.16. Let B 2 H(X) and let c be a contraction factor of T .
Prove equation (3.1) by proving that lim

n!1

dH(T n(B), A) = 0. As part of

the proof, use induction to establish that dH(T n(B), A)  c
n
dH(B,A).

⇤
To summarize our findings, we now know the following.

(1) If {X;T1, T2, ..., TK} is an iterated function system with contraction factor
c = max{c1, c2, ..., cK}, then it has a unique fixed point A 2 H(X).

(2) That fixed point looks like T n(X) for a large enough value of n, and so
(3) In chapter 1, the images for C5,K5, and S5, which were the 5th iterations

of X, look pretty much like the fractal does.

3.3. Two computer algorithms for IFS fractals

3.3.1. Deterministic algorithm. The theory is pretty clear: start with any
initial compact set B and plot T n(B) for as large of an n as your computer can
handle. Here is some “pseudocode” for how you might actually do this; details will
depend on the software you are using.

• Input the functions T1, T2, ..., TK into the computer.
• Input some initial set B0, which could be as simple as a single point.
• Decide how many iterations you want to do and call it something like
numits.

• Compute T numits(B0).
• Display T numits(B0).

For this course we will carry out the algorithm in Mathematica, and you will get
some sample code for that soon.

3.3.2. Probabilistic Algorithm. The probabilistic algorithm for making frac-
tals on the computer is quicker and more e�cient than the deterministic one. It
capitalizes on the fact that any set converges to A by applying the individual maps
at random instead of using the entire collage map. We claim (but do not prove)
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that the orbit of any point under a random application of the Tj ’s will trace out
the entire fractal A. This may be believable since the collage map applied to any
one-element set converges to A. Let us present the algorithm and then revisit this
issue and the issue of relative e�ciency.

Suppose we have the iterated function system {X;T1, T2, ..., TK}. The algo-
rithm begins with any initial point x0 2 X and computes its orbit a little di↵erently
than in Chapter 1, since T is not a map on X and we need to account for using all
the Tjs. For each n 2 1, 2, 3, ... we select an index jn 2 {1, 2, ...,K} randomly and
apply that transformation to compute xn = Tjn(xn�1). We compute and plot the
entire orbit of x0 up to numits2 iterations, where numits2 will be an extremely
large number.

In advance of writing code there are two decisions to be made. It is necessary to
decide on probabilities p1, p2, ..., pK to use to select the transformations; of course

we need
KX

j=1

pj = 1. Higher probabilities mean more visits to the region that

transformation covers, so the probabilities do a↵ect the final images. That can be
used as an advantage, for instance by giving smaller regions lower probabilities.

The other decision is what initial point x0 to use. If the initial point is chosen
from inside of A (for instance if it is the fixed point of a Tj), then the entire orbit
of x0 will be in A as you will prove in exercise 3.29. However it is not necessary
to choose x0 carefully since after a few iterations it must be close to A anyway, as
you will prove in exercise 3.30.

Here is some pseudocode for the probabilistic algorithm.

• Input the Tj ’s, pj ’s, and numits2.
• Generate a sequence {jn}numits2

n=1 of elements of {1, 2, ...,K} according to
the probabilities using your software’s random number generator.

• Input x0 and compute the set {x0, x1, x2, ..., xnumits2} according to xn =
Tjn(xn�1).

• Plot the subset O = {xnmin, xnmin+1, xnmin+2, ..., xnumits2}, where nmin

ensures the orbit is close enough to A. We may use nmin = 10 or 20.

One thing that is clear is that all of the points in O are close to points in A, as
long as nmin is chosen to be moderately large. You can decide on the size of nmin

by looking at the contraction factor of T and the maximum distance M in X. If
you want the points to be within ✏ of A, simply choose nmin so that cnmin

M  ✏.
If you take ✏ to be pixel size and compute the corresponding nmin, then you can
be sure that the points in O are, up to computer-visible resolution, points in A.

The harder thing to justify rigorously is that O fills up A in a representative
fashion. In fact it will not if any of the pis are set to be zero. Otherwise O should
visit each Tjs region about pj ·numits2 times unless a highly improbable sequence of
indices was selected by the random number generator (which is possible, of course).
Ordinarily, then, we’d expect it to fill in each Tjs part of the image of A pretty well.
The experimenter can adjust the pjs if they feel the image is not representative.

3.3.3. A comparison of the two algorithms. The probabilistic algorithm
is more e�cient than the deterministic algorithm for getting a good picture of the
attractor. It is beyond the scope of this course to prove that, but let’s try and get
a sense of why it is true. In everything that follows let (X;T1, ..., TK) be an IFS
with contraction factor c = max{c1, ..., cK}.
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Exercise 3.17. Suppose you are using the deterministic algorithm on
the initial set {x0} for some x0 2 X.

(1) What is the maximum number of elements in the set T numits({x0})?
(2) Let’s make a really rough approximation by calling an “operation”

the application of a single Tj to a single element of X. How many
operations will the computer have to perform in order to compute
T numits({x0})?

So you can see that numits has to be kept fairly small to make sure that
your computer doesn’t crash and can do all those operations in a timely fashion.
However, if numits is small, T numits({x0}) may not be particularly close to A.

Exercise 3.18. Compute an upper bound on dH(T numits({x0}), A). (It
is convenient to let M represent the maximum Euclidean distance between
any two points in X.) Under what circumstances might this distance not
be particularly small?

Now let’s compare those results with what happens in the probabilistic algo-
rithm.

Exercise 3.19. Now suppose that you are beginning with an arbitrary
x0 2 X and using the probabilistic algorithm to compute the orbit out to
numits2.

(1) Using the same rough definition of an operation as before, how
many operations does it take to compute the orbit of x0 up to
numits2?

(2) If you cut o↵ the first nmin� 1 elements of the orbit and consider
the set O = {xnmin, xnmin+1, xnmin+2, ..., xnumits2}, give an upper
bound on min{✏ such that O ⇢ A✏}.

(3) Suppose nmin is greater than the number of iterations numits used
in the deterministic algorithm, and suppose numits2 is about the
same size as the number of points in T numits({x0}). Do you believe
T numits({x0}) ought to be a better approximation of A than O is,
or is O the better approximation of A? Explain.

3.4. The Collage Theorem

Suppose that you have an image L that you would like to store in as little
space as possible. Or maybe you just want to be able to replicate L using an
iterated function system for fun. The collage theorem, proved by Barnsley in 1985
and appearing on page 94 of [Bar12], gives you a way to measure how close the
attractor of an iterated function system will be to your target image L.
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Theorem 3.20 (The Collage Theorem). Let X be a compact subset of

R,Rd
, or C and let L 2 H(X) be given. If (X;T1, ..., TK) is an IFS with

contraction factor c and attractor A, then

dH(L,A)  dH(L, T (L))

1� c
.

How is this theorem used? It certainly does not tell you how to get an IFS
for which dH(L, T (L)) is small. You basically have to experiment with that, and
there is literature out there containing strategies. You have full control over how
many maps you want to use, their contraction factors, etc. But no matter what
IFS you come up with from that process, the closeness of A to your target image
L is bounded by how close L was to T (L).

Exercise 3.21. Will an IFS with a large contraction factor or a small
contraction factor do a better job of approximating L? Does the number of
Tis you use matter? Explain.

3.5. Exercises

Exercise 3.22. Suppose H(X) is a space of fractals with A,B 2 H(X) and
� � 0. Prove that

(3.2) (A [B)� = A� [B�

Exercise 3.23. Suppose A and B are elements of some space of fractals H(X)
and let ✏ > 0. Prove or give a counterexample to:

(A \B)✏ = A✏ \B✏

Exercise 3.24. Suppose T : H(X) ! H(X) is a collage of the maps Ti : X !
X, i = 1, 2, ...,K. Prove that if A ⇢ B for A,B 2 H(X), then T (A) ⇢ T (B).

Exercise 3.25. Give an example of a transformation T : H(X) ! H(X) for
which there are A,B 2 H(X) with A ⇢ B, yet T (A) 6⇢ T (B).

Exercise 3.26. Make an IFS with three transformations in R2 that we haven’t
seen in class, and put it into the deterministic algorithm in mathematica. Please
turn in your a�ne maps and your image of the attractor.

Exercise 3.27. Consider the spiral for Exercise 1.36. Here’s a fun fact: the
number of arms does not depend on the central transformation that has a large
contraction factor. Instead it depends on the number of highly contractive trans-
formations you put around the outside. Adapt the IFS for Exercise 1.36 to have
three arms, and put your answer into the probabilistic mathematica code and see
what the attractor looks like. Adjust until you are happy with your image.

Exercise 3.28. In this example you are going to play with probabilities when
making the Sierpinski triangle. Compare and contrast the number of iterations
necessary to produce a “good” view of the triangle when you use the following
probabilities:

(1) p1 = .33, p2 = .33, p3 = .34.



38 3. ITERATED FUNCTION SYSTEMS

(2) p1 = .2, p2 = .46, p3 = .34.
(3) p1 = .1, p2 = .56, p3 = .34.

Exercise 3.29. Let (X;T1, ..., TK) be an IFS and let {jn}numits2
n=1 be a sequence

of indices from 1, 2, ...,K as would be selected for the probabilistic algorithm. Sup-
pose a is an element of the attractor A of the IFS. Prove that the orbit of a in the
algorithm is contained in A.

Exercise 3.30. Let (X;T1, ..., TK) be an IFS with attractor A and let {jn}1n=1

be a sequence of indices from 1, 2, ...,K as would be selected for the probabilistic
algorithm (except infinite, theoretically). Suppose x0 2 X and compute its orbit
{xn}1n=1 as in that algorithm. Prove that l(xn, A) = min{d(xn, a) such that a 2 A}
tends to 0 as n ! 1.
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