
CHAPTER 2

Hausdor↵ metric and the space of fractals

The goal of this chapter and the next is to rigorously prove conditions under
which the fractal for a given collage map actually exists. That is, we will show
when a collage map T admits a set A for which T (A) = A. As an added bonus, we
will prove that the set A is the limit of T n(S0) for any viable initial set S0. That
insight gives rise to an e�cient algorithm that may be implemented on a computer
to generate images of fractals.

In order to do all of this in a mathematically sound fashion it is necessary to
build a foundation, which is the purpose of this chapter. The foundation we require
is an understanding of “the space of fractals” H(X) as a metric space under the
“Hausdor↵ metric” dH . There are a number of technical details we will need to
address in order to make this precise.

Until further notice we will use X to mean some subset of Rn or C along with
its usual metric, which we will denote by d(x, y) and call the standard Euclidean

metric. To be precise, if x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) are elements of
Rn, then we will use the following definition and notations interchangeably:

d(x, y) =
p
(x1 � y1)2 + (x2 � y2)2 + · · ·+ (xn � yn)2 = |x� y|.

If z = a+ ib and w = c+ id are elements of C the metric is basically the same and
can be written as

d(z, w) =
p
a� c)2 + (b� d)2 =

q
(z � w)(z � w) = |z � w|.

2.1. A tiny bit of point-set topology

We cannot avoid learning a little bit of terminology that is commonly found in
the realm of “analysis” (the branch of mathematics that calculus lives in). The main
thing we need is the idea of a compact set, which we will give a simplified definition
of here, and which you will learn/have learned about in your Real Analysis course.
Compact sets in Rn or C are sets that are closed and bounded, so we must define
those ideas now.
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20 2. HAUSDORFF METRIC AND THE SPACE OF FRACTALS

Definition 2.1. We say that a set A ⇢ X is closed if it contains its limit
points. That is, if a sequence {an} = {a1, a2, a3, ...} in A has the property
that lim

n!1

an = a, then a 2 A also.a

aOf course, if you have not had Real Analysis you may not know the precise definition of
the limit of a sequence. For our purposes it will su�ce for you to use your intuitive idea
of a limit. However, you may be curious about the o�cial definition, so here it is.

Definition 2.2. Let {xn} be a sequence in X. We say lim
n!1

xn = L if and only if for

every ✏ > 0 there is an N 2 N such that for every n � N , d(xn, L) < ✏.

Exercise 2.3. Throughought your mathematical career your instruc-
tors have been referring to intervals like [3, 7] as closed intervals. It turns
out they have always meant it in the precise sense of Definition 2.1.

(1) Convince yourself that [3, 7] satisfies the definition of being closed.
(2) Make an example of an interval that is not closed. Show, using the

definition, exactly why it fails to be closed.

Exercise 2.4. Can a finite set fail to be closed?

Exercise 2.5. Give several examples of sets that are or are not closed,
in R and C. Try to make examples that di↵er in interesting ways.

The intuitive idea behind a set being bounded is that no portion of it heads o↵
to infinity. In R2 or C that is equivalent to saying you can draw a big circle around
it. In R it means that you can put upper and lower bounds on its elements. In
higher dimensions it means you can enclose the set in a su�ciently large “n-ball”
(interval, circle, sphere,...). For concreteness in the definition we choose to say that
the n-ball is centered at the origin.

Definition 2.6. We say that a set A ⇢ X is bounded if there is some
number r > 0 such that |a|  r for all a 2 A. That is to say, there is an
r > 0 for which d(a, 0)  r for all a 2 A.

Exercise 2.7. Can a finite set fail to be bounded?

Exercise 2.8. Give several examples of sets that are or are not bounded,
in R and C. Try to make examples that di↵er in interesting ways.

What we really need to define the space of fractals is compactness. This is
a profoundly useful property of sets that will be dealt with in detail in your real
analysis course. What we are taking as a definition here is actually the celebrated
Heine-Borel theorem, but that is something for you to tackle on another day.
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Definition 2.9. We say that a set A ⇢ X is compact if it is closed and
bounded.

There are a number of incredibly useful properties possessed by compact sets.
One that is very important for fractal geometry is that it is possible to measure the
distance between two compact sets unambiguously.

2.2. H(X), the space of fractals.

Let X be a compact subset of Rn (for some n) or C, with the standard
Euclidean metric d. The space of fractals is the set

H(X) = {A ✓ X such that A is compact}

An element of H(X) is therefore a compact subset of X. Take a moment to
think about that carefully. Probably you will need several moments, because a
“point” in the space of fractals H(X) is actually a “set” in the space X. Put
another way, the space of fractals is the set of compact subsets of X.

Exercise 2.10. Let X be the unit interval [0, 1]. Give three specific
examples of elements of H(X), complete with pictures. Try and make your
examples as di↵erent from each other as possible.

Exercise 2.11. Give examples of subsets of [0, 1] that are not elements
of H(X). Draw pictures that explain why.

Exercise 2.12. Let X be the unit square in R2. Give three specific
examples of elements of H(X), complete with pictures. Try and make your
examples as di↵erent from each other as possible.

Exercise 2.13. Give examples of subsets of the unit square that are
not elements of H(X). Draw pictures to help explain why.

Fractals are compact subsets of X, i.e. elements of H(X). They live in H(X)
along with all the other compact subsets of X, but they satisfy special geometric
properties that were discussed in the first chapter. We know that fractals can
appear is as limit points of iterated function systems; next we need to develop the
concept of metric spaces in order to make that idea precise.

2.3. Metric spaces

The only way to do geometry on a space is to first know how to measure the
distance between points in that space. A property of an object in the space is
considered “geometric” if it doesn’t change when you move the object in a manner
that preserves distances.
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The domain of a metric on a space X is the set of all ordered pairs of elements
of X. It takes the following notation and definition:

X ⇥X = {(x, y) such that x, y 2 X}.

Definition 2.14. A metric on X is a function d : X⇥X ! R satisfying
the following conditions:

(1) d(x, y) � 0 for all x, y 2 X,
(2) d(x, y) = 0 if and only if x = y,
(3) d(x, y) = d(y, x) for all x, y 2 X, and
(4) (triangle inequality) d(x, y)  d(x, z) + d(z, y) for all x, y, z 2 X.

Thus a metric is positive, symmetric, satisfies the triangle inequality, and dis-
tances between nonequal elements are never 0. An important detail to notice in
this definition is the fact that the distance is not allowed to be 1. That is because
we have defined d with d : X ⇥X ! R, and 1 is not a real number.

One would hope that the standard Euclidean metric satisfies the o�cial math-
ematical definition for a metric, and it does:

Exercise 2.15. Prove that when X = R, the function d(x, y) = |x� y|
satisfies the definition of a metric. You may assume all standard properties
of the absolute value function as you do your proof.

Exercise 2.16. For the standard Euclidean metrics in R and R2, deter-
mine conditions on x, y and z for which the triangle inequality is an equality.

Exercise 2.17. Consider the standard Euclidean metric in R2.

(1) Sketch a picture of d(x, y) and explain it in terms of the Pythagorean
Theorem.

(2) Sketch another picture in R2 that clearly shows why the triangle
inequality is so named.

There are numerous reasons why it is useful in real life to have di↵erent defi-
nitions of a metric on the same space. For example, imagine a ruler that measures
distance in the English system (inches) on one side and in the metric system (cen-
timeters) on the other. If I ask you the distance between two points, your answer
is going to depend on which side of the ruler you are using, although it would be
natural for you to provide the units with your answer.

Exercise 2.18. Consider d : R2 ⇥ R2 ! R given by the formula

d(x, y) =

(
1 x 6= y

0 x = y

Is d a metric on R2?
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Exercise 2.19. For this exercise let X = R.
(1) Make up an example of a function d : X ⇥ X ! R such that

condition (1) of a metric fails.
(2) Make up an example of a function d : X ⇥ X ! R such that

condition (1) of a metric holds but condition (2) fails.
(3) Make up an example of a function d : X ⇥ X ! R such that

conditions (1) and (2) of a metric hold but condition (3) fails.
(4) Make up an example of a function d : X ⇥ X ! R such that

conditions (1), (2), and (3) hold but (4) fails.

When you change the metric on a space you change its geometry in a funda-
mental way. Experiment with this idea using the metric(s) that you came up with
here by considering balls of radius ✏ centered at x 2 X, defined by and with the
notation:

B(x, ✏) = {y 2 X such that d(x, y)  ✏}

The choice of metric determines the shape of the ball by determining which
points fall into the ball and which do not. Put another way, the choice of the
metric determines the geometry of the balls, and by extension the geometry of
X. In the next few exercises you have the opportunity to see what happens when
di↵erent metrics are applied.

Exercise 2.20. (1) For the standard Euclidean metric in R, com-
pute B(3, 1/2) and B(2,�1).

(2) Let d↵(x, y) = |↵x � ↵y| for some ↵ > 0. Compute B(3, 1/2) in
this metric.

Exercise 2.21. Try to make up an example of a metric on R2 that isn’t
the standard Euclidean metric by altering the definition of the standard
Euclidean metric just a little bit. If you are successful, try to compute
B(x, ✏) for some choice of x and ✏ and see what shape the ball is.

2.4. Hausdor↵ metric on H(X)

The Hausdor↵ metric is a way to measure the distance dH(A,B) between two
compact sets A,B 2 H(X). We’re going to look at the definition two di↵erent ways,
both of which depend on the standard Euclidean metric and which are equivalent.
The first way depends on the idea of ✏-thickening of sets. The second way depends
on maximizing the minimum distance between elements of A and B. In both cases
care needs to be taken to ensure the metric is symmetric, i.e. that dH(A,B) =
dH(B,A), and in both cases this will be done by taking a maximum.

2.4.1. Hausdor↵ metric definition using ✏-thickening. .
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Let A be a compact subset of X and let ✏ � 0. The ✏-thickening of A is the
set

A✏ = {x 2 X such that d(x, a)  ✏ for some a 2 A}.
That is, A✏ is the subset of X that contains all the points in X that are
within some element of A. Alternatively, one could imagine taking the union
of all of the ✏-balls B(a, ✏), using each element a of A as a center.

Example 2.22. Suppose A ⇢ R is given by A = {1, 2} and let ✏ = 1/3.
Then A✏ = [2/3, 4/3] [ [5/3, 7/3]. This is because every point in [2/3, 4/3]
is within ✏ of 1 2 A and every point in [5/3, 7/3] is within ✏ of 2 2 A.

Exercise 2.23. Let A = [1, 2] ⇢ R and let ✏ = 1/4. Find A✏.

Exercise 2.24. Let C ⇢ [0, 1] be the middle-thirds Cantor set and let
✏ = 1/9. Find C✏. Repeat with ✏ = 1/27.

Exercise 2.25. Let A ⇢ R2 be the unit circle and let ✏ = 1/2. Give a
precise description of A✏. Repeat for ✏ = 2.

Exercise 2.26. Let A be the line segment in R2 connecting the origin
to (1, 1) and let ✏ = .1. Make a fairly precise sketch of the set A✏.

Exercise 2.27. Let A 2 H(X) and let ✏ = 0. What is A✏?

In order to find the Hausdor↵ distance between two compact sets A,B ⇢ X

you will need to be able to find the smallest ✏ for which B ⇢ A✏. That is to say, you
will need to be able to find the minimum amount of thickening A needs in order to
cover all of B. Let’s look at a few concrete examples first and then define what we
mean by this precisely.

Example 2.28. Let A = {1, 2} ⇢ R and let B = [.75, 1.25]. The small-
est ✏ for which B ⇢ A✏ is .25. That’s because A.25 = [.75, 1.25][ [1.75, 2.25]
and if ✏ is any smaller than .25, the interval from A✏ that intersects B is too
small to contain it.

Exercise 2.29. For the A and B in the previous example, what is the
smallest ✏ for which A ⇢ B✏?

Let’s be really precise about our usage of the word “smallest” by defining what
it means to be the minimum value in a set of real numbers.
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Definition 2.30. Let A ⇢ R. The minimum element of A, if it exists,
is denoted minA = min{x such that x 2 A} and is defined to be the element
a 2 A for which a  x for all x 2 A.

It is possible for the minimum element of a set not to exist, for instance the
interval (0, 1) has no minimum element.1 In the space of fractals we do not have
to worry about this problem because compact sets of real numbers always have a
minimum element.

Exercises 2.28 and 2.29 show that one needs to consider two minimum epsilons:
the one for which B ⇢ A✏ and the one for which A ⇢ B✏. If we do not consider both
we run the risk of the metric we define using ✏-thickenings to fail to be symmetric.

Definition 2.31. Let A,B 2 H(X). The Hausdor↵ distance between
A and B is given by

(2.1) dH(A,B) = min{✏ such that A ⇢ B✏ and B ⇢ A✏}

It is possible to rewrite this definition as the maximum of two minimums:

(2.2) dH(A,B) = max {min{✏ such that A ⇢ B✏},min{✏ such that B ⇢ A✏}}
Although that may look more complicated, it may the more useful because you will
calculate each ✏ separately and then just take the larger of the two. To see that
it is equivalent, consider the ✏ defining the minimum in equation 2.1. That ✏ is
greater than or equal to each of the minimums of equation 2.2 and thus is greater
than or equal to their maximum. On the other hand, the maximum of the two
epsilons from 2.2 is certain to be an epsilon for which both A ⇢ B✏ and B ⇢ A✏, so
it is greater than or equal to that from 2.1. When two numbers are greater than or
equal to each other they must be equal.

Exercise 2.32. Let A = {1, 2} ⇢ R and let B = [.75, 1.25]. Find
dH(A,B).

Exercise 2.33. In this exercise we consider distances between compact
subsets A and B of R2. Please make sketches to illustrate your answers.

(1) LetA be the unit square [0, 1]⇥[0, 1]and letB = {(x, y) such that x2+
y
2 = 1} (the unit circle). Find dH(A,B).

(2) Let A be the unit square and let B be the disk of radius 1/2
centered at (1/2, 1/2). Find dH(A,B).

(3) Let A be the unit square and let B be the line segment connecting
(0, 1) to (1, 0). Find dH(A,B).

(4) Let A be the unit square and let B be the line segment connecting
(�1, 2) to (0, 2). Find dH(A,B).

(5) Let A be the line segment from the origin to (1, 0) and let B be
the line segment from the origin to (0, 1). Find dH(A,B).

1There is a related mathematical notion called the infimum of a set, which is the largest
number that is not greater than any element of the set. The infimum of (0, 1) is 0.
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Exercise 2.34. Let A = [0, 1/2] and consider the Cantor set collage
map T = T1[T2 on H([0, 1]) given by T1(x) = 1/3x and T2(x) = 1/3x+2/3.
Compute dH(A, T (A)) and dH(T (A), T 2(A)).

Exercise 2.35. In exercise 1.26 you were assigned a set S0 and asked
to apply the collage map T to it two times. For that collage map and your
particular S0, compute dH(S0, T (S0)) and dH(T (S0), T 2(S0)).

2.4.2. Hausdor↵ distance via the maximum of the minimum dis-

tances. We must build up to Hausdor↵ metric in stages in this method also. We
begin by measuring the distance from a point x 2 X to a a set A 2 H(X).

Consider the Euclidean distance d(x, a) for each element of A; the minimum
is defined to be the distance from x to A and we write

l(x,A) = min{d(x, a) such that a 2 A}

As before, we don’t have to worry about whether this minimum exists since A

is a compact set.

Exercise 2.36. Let A be the unit circle in R2 and let x = (1, 1). Find
l(x,A).

Exercise 2.37. Let H(X) be any space of fractals and let A 2 H(X).
If x 2 A, what is l(x,A)?

A particularly nice consequence of the compactness of A is that not only is this
minimum distance guaranteed to exist, it must be realized as the distance between
x and at least one specific point in A.

Lemma 2.38. For any A 2 H(X) and x 2 X there is an element ŷ 2 A

for which l(x,A) = d(x, ŷ).

For the proof of this lemma see [Bar12, p. 29].

Exercise 2.39. In each of the previous two exercises find ŷ.

Next we define the distance from one set A 2 H(X) to another set B 2 H(X)
by considering all distances l(a,B) over all a 2 A. This maximum is, like
the minimum, guaranteed to exist because of compactness. We define the

distance from A to B as

l(A,B) = max{l(a,B) such that a 2 A}
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Exercise 2.40. Let A = [0, 2] and let B = [1, 1.5]. Find l(A,B).

There is a similar lemma saying that the maximum distance is attained by
elements of A and B which we state here. The existence is a consequence of
compactness.

Lemma 2.41. For any A,B 2 H(X) there exists x̂ 2 A and ŷ 2 B such

that l(A,B) = d(x̂, ŷ).

Exercise 2.42. Let A = [0, 2] and let B = [1, 1.5]. Find x̂ and ŷ that
satisfy the lemma. Are they unique?

So the function l seems like progress toward defining a metric on H(X). We
immediately see that it is nonnegative. Consider the following exercise and then
decide about conditions (2) and (3) of a metric.

Exercise 2.43. Let A = [0, 2] and let B = [1, 1.5]. Find l(B,A).

So we don’t quite have a metric yet. But it turns out that you can fix both of
the issues this example presented in a very simple way by defining the Hausdor↵

metric to be

(2.3) dH(A,B) = max{l(A,B), l(B,A)}

It is a technical exercise to prove that this version of the definition is equivalent
to the one given in terms of ✏-thickenings. A viable strategy for the proof is to
consider ✏ to be the value given by the first definition and ✏

0 the value given by the
second. Then you would prove that ✏  ✏

0 and ✏
0  ✏. This shows they are equal.

Exercise 2.44. A corollary to Lemma 2.41 is that there is an x̂ 2 A

and a ŷ 2 B such that dH(A,B) = d(x̂, ŷ). Prove this corollary.

Exercise 2.45. Let A = [0, 2] and let B = [1, 1.5]. Find dH(A,B) and
find the x̂ and ŷ that represent this distance.

Exercise 2.46. Let A be the disk of radius 2 centered at (3, 0) and let
B be the rectangle with corners at (2,�2), (3,�2), (3, 4), and (2, 4).

(1) Make a sketch that uses Lemma 2.41 to show l(A,B). Be sure to
label x̂ and ŷ.

(2) Repeat the previous part for l(B,A).
(3) Find dH(A,B).
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Exercise 2.47. Let X be the unit square and let T be the collage map
of the transformations Ti, i = 1, .., 4 defined as follows.

T1(x) = x/2 T2(x) = x/2 + (1/2, 0)

T3(x) = x/2 + (0, 1/2) T4(x) = x/2 + (1/2, 1/2)

Let A 2 H(X) be given by A = {(0, 0)}.
(1) Find dH(A,X), dH(T (A), X), and dH(T 2(A), X).
(2) Find a formula for dH(T n(A), X).
(3) We can consider the sequence {T n(A)}1

n=0 of elements of H(X).
Discuss the evidence for the existence of the limit lim

n!1

T n(A).

2.5. Exercises

Exercise 2.48. Consider the subset of R2 given byA = {(x, sin(⇡/x)) such that x 2
(0, 1)}.

(1) Make a fairly accurate sketch of this subset of R2.
(2) Is this set bounded?
(3) A is not a closed set. Find the limit points of A that are not in A.
(4) For two of the limit points of A that you found in the previous part,

exhibit a sequence of elements of A that converge to it.

Exercise 2.49. The “taxicab metric” is a natural metric to use in R2 and is
defined by:

dt(x, y) = |x1 � y1|+ |x2 � y2|
(1) Prove that dt satisfies the conditions to be a metric.
(2) Explain in words, perhaps using a drawing to explain your thinking, why

the word “taxicab” has been chosen to describe the metric.

Exercise 2.50. (1) For the metric ds(x, y) = |x3 � y
3| on R, compute

B(0, 1/8) and B(3, 1/8). Compare and contrast to each other and to the
balls you would get using the standard Euclidean metric.

(2) For the taxicab metric in R2, calculate B((0, 0), 1). Compare and contrast
to what you get for B((0, 0), 1) using Euclidean metric.

Exercise 2.51. Prove that if ✏ � 0, then B ✓ B✏.

Exercise 2.52. Prove, using whichever definition of dH you like, properties
(1), (2), and (3) of a metric.

Exercise 2.53. Prove that if B ⇢ A, then l(B,A) = 0.

Exercise 2.54. Let X = Rn and consider A and B to be compact subsets of
X. Prove the following two facts:

(1) A [B is a compact subset of X.
(2) A \B is a compact subset of X.


	Chapter 1. Introduction
	1.1. Classic examples
	1.2. A geometric approach to transformations.
	1.3. Collage maps: the building blocks of iterated function systems.
	1.4. Affine transformations in two dimensions: a geometric approach
	1.5. Collage maps in two dimensions
	1.6. What is a fractal?
	1.7. Exercises

	Chapter 2. Hausdorff metric and the space of fractals
	2.1. A tiny bit of point-set topology
	2.2. H(X), the space of fractals.
	2.3. Metric spaces
	2.4. Hausdorff metric on H(X)
	2.5. Exercises

	Chapter 3. Iterated Function Systems
	3.1. Collage maps as contractions on the space of fractals
	3.2. Existence of Attractors for Iterated Function Systems
	3.3. Two computer algorithms for IFS fractals
	3.4. The Collage Theorem
	3.5. Exercises

	Chapter 4. Dimensions
	4.1. Motivating examples, or, Fun with length and area.
	4.2. The idea of fractal dimension
	4.3. Similarity dimension
	4.4. Box-counting dimension
	4.5. When the dimensions are equivalent
	4.6. Exercises

	Chapter 5. Julia Sets
	5.1. Basic example: dynamical systems in R
	5.2. Classic example: dynamical systems in C.
	5.3. The Escape Time Algorithm
	5.4. Exploring some more, algebraically and Mathematica-ally.

	Chapter 6. Mandelbrot Sets
	6.1. Using the escape-time algorithm to plot the Mandelbrot set.

	Bibliography

